摘要:
A fully automatic, computationally efficient segmentation method of video employing sequential clustering of sparse image features. Both edge and corner features of a video scene are employed to capture an outline of foreground objects and the feature clustering is built on motion models which work on any type of object and moving/static camera in which two motion layers are assumed due to camera and/or foreground and the depth difference between the foreground and background. Sequential linear regression is applied to the sequences and the instantaneous replacements of image features in order to compute affine motion parameters for foreground and background layers and consider temporal smoothness simultaneously. The Foreground layer is then extracted based upon sparse feature clustering which is time efficient and refined incrementally using Kalman filtering.
摘要:
Systems and methods are disclosed for processing a low resolution image by performing a high resolution edge segment extraction on the low resolution image; performing an image super resolution on each edge segment; performing reconstruction constraint reinforcement; and generating a high quality image from the low quality image.
摘要:
Systems and methods are disclosed for processing a low resolution image by performing a high resolution edge segment extraction on the low resolution image; performing an image super resolution on each edge segment; performing reconstruction constraint reinforcement; and generating a high quality image from the low quality image.
摘要:
A video super-resolution method that combines information from different spatial-temporal resolution cameras by constructing a personalized dictionary from a high resolution image of a scene resulting in a domain specific prior that performs better than a general dictionary built from images.
摘要:
A video surveillance system uses rule-based reasoning and multiple-hypothesis scoring to detect predefined behaviors based on movement through zone patterns. Trajectory hypothesis spawning allows for trajectory splitting and/or merging and includes local pruning to managed hypothesis growth. Hypotheses are scored based on a number of criteria, illustratively including at least one non-spatial parameter. Connection probabilities computed during the hypothesis spawning process are based on a number of criteria, illustratively including object size. Object detection and probability scoring is illustratively based on object class.
摘要:
A video surveillance system uses rule-based reasoning and multiple-hypothesis scoring to detect predefined behaviors based on movement through zone patterns. Trajectory hypothesis spawning allows for trajectory splitting and/or merging and includes local pruning to managed hypothesis growth. Hypotheses are scored based on a number of criteria, illustratively including at least one non-spatial parameter. Connection probabilities computed during the hypothesis spawning process are based on a number of criteria, illustratively including object size. Object detection and probability scoring is illustratively based on object class.
摘要:
A video surveillance system uses rule-based reasoning and multiple-hypothesis scoring to detect predefined behaviors based on movement through zone patterns. Trajectory hypothesis spawning allows for trajectory splitting and/or merging and includes local pruning to managed hypothesis growth. Hypotheses are scored based on a number of criteria, illustratively including at least one non-spatial parameter. Connection probabilities computed during the hypothesis spawning process are based on a number of criteria, illustratively including object size. Object detection and probability scoring is illustratively based on object class.
摘要:
A video surveillance system uses rule-based reasoning and multiple-hypothesis scoring to detect predefined behaviors based on movement through zone patterns. Trajectory hypothesis spawning allows for trajectory splitting and/or merging and includes local pruning to managed hypothesis growth. Hypotheses are scored based on a number of criteria, illustratively including at least one non-spatial parameter. Connection probabilities computed during the hypothesis spawning process are based on a number of criteria, illustratively including object size. Object detection and probability scoring is illustratively based on object class.
摘要:
A video surveillance system uses rule-based reasoning and multiple-hypothesis scoring to detect predefined behaviors based on movement through zone patterns. Trajectory hypothesis spawning allows for trajectory splitting and/or merging and includes local pruning to managed hypothesis growth. Hypotheses are scored based on a number of criteria, illustratively including at least one non-spatial parameter. Connection probabilities computed during the hypothesis spawning process are based on a number of criteria, illustratively including object size. Object detection and probability scoring is illustratively based on object class.
摘要:
A video surveillance system uses rule-based reasoning and multiple-hypothesis scoring to detect predefined behaviors based on movement through zone patterns. Trajectory hypothesis spawning allows for trajectory splitting and/or merging and includes local pruning to managed hypothesis growth. Hypotheses are scored based on a number of criteria, illustratively including at least one non-spatial parameter. Connection probabilities computed during the hypothesis spawning process are based on a number of criteria, illustratively including object size. Object detection and probability scoring is illustratively based on object class.