摘要:
A system and method for providing component and sub-system state of health prognosis in a complex system using fault models and component aging models. The method includes determining a current state of health value for a sub-system using fault signature test results and determining current state of health values for a plurality of components in the sub-system using the fault signature test results. The method also determines current state of health values for components in the system that cannot use fault signature test results using a first probability model and the current state of health values for the plurality of components. The method determines predicted future state of health values for the components in the sub-system using component aging models and determines a predicted future state of health value for the sub-system using a second probability model and the future state of health values of the components.
摘要:
A system and method for determining the health of a component includes retrieving measured health signatures from the component, retrieving component usage variables, estimating component health signatures using an aging model, determining an aging derivative using the aging model and calculating an aging error based on the estimated component health signatures, the aging derivative and the measured health signatures.
摘要:
A system and method for providing component and sub-system state of health prognosis in a complex system using fault models and component aging models. The method includes determining a current state of health value for a sub-system using fault signature test results and determining current state of health values for a plurality of components in the sub-system using the fault signature test results. The method also determines current state of health values for components in the system that cannot use fault signature test results using a first probability model and the current state of health values for the plurality of components. The method determines predicted future state of health values for the components in the sub-system using component aging models and determines a predicted future state of health value for the sub-system using a second probability model and the future state of health values of the components.
摘要:
A system and method for determining the health of a component includes retrieving measured health signatures from the component, retrieving component usage variables, estimating component health signatures using an aging model, determining an aging derivative using the aging model and calculating an aging error based on the estimated component health signatures, the aging derivative and the measured health signatures.
摘要:
A method of determining a state-of-charge for a battery is provided. A startup state-of-charge of the battery is determined as a function of a present open circuit voltage measurement for a present ignition startup, at least one open circuit voltage observation of a previous ignition startup, and a current draw integration over a time period from a previous ignition startup event to a present ignition startup event. A run state-of-charge change of the battery is determined for an ignition key-on operation. The run state-of-charge change comprises a difference between the present open circuit voltage measurement and the at least one previous open circuit voltage observation, and is determined in response to of a current draw integration over a respective period of time. The state-of-charge of the battery is calculated based on a function of the startup state-of-charge and the run state-of-charge change of the battery.
摘要:
A method of determining a state-of-charge for a battery is provided. A startup state-of-charge of the battery is determined as a function of a present open circuit voltage measurement for a present ignition startup, at least one open circuit voltage observation of a previous ignition startup, and a current draw integration over a time period from a previous ignition startup event to a present ignition startup event. A run state-of-charge change of the battery is determined for an ignition key-on operation. The run state-of-charge change comprises a difference between the present open circuit voltage measurement and the at least one previous open circuit voltage observation, and is determined in response to of a current draw integration over a respective period of time. The state-of-charge of the battery is calculated based on a function of the startup state-of-charge and the run state-of-charge change of the battery.
摘要:
A method is provided for determining a battery capacity for a vehicle battery. Open circuit voltages of a vehicle battery are measured during ignition startups. A battery parameter is estimated for the vehicle battery that is a function of a present open circuit voltage measurement for a present ignition startup, a function of at least one open circuit voltage observation of a previous ignition startup, a function of a current draw integration over a time period from a previous ignition startup event to a present ignition startup event, and a function of an adjustment factor. A battery parameter is determined based on a new battery. The battery capacity is calculated as function of the battery parameter for the vehicle battery and the battery parameter for the new battery.
摘要:
A method is provided for determining a battery capacity for a vehicle battery. Open circuit voltages of a vehicle battery are measured during ignition startups. A battery parameter is estimated for the vehicle battery that is a function of a present open circuit voltage measurement for a present ignition startup, a function of at least one open circuit voltage observation of a previous ignition startup, a function of a current draw integration over a time period from a previous ignition startup event to a present ignition startup event, and a function of an adjustment factor. A battery parameter is determined based on a new battery. The battery capacity is calculated as function of the battery parameter for the vehicle battery and the battery parameter for the new battery.
摘要:
A cooperative diagnostic and prognosis system for generating a prognosis of at least one component in a vehicle. An in-vehicle diagnostic unit determines a diagnostic signature of the component each time an occurrence of a condition is triggered and transmits the diagnostic signature to an off-board diagnostic unit. The off-vehicle diagnostic unit determines a SOH of the component and a rate-of-change in the SOH of the component. The off-vehicle diagnostic unit determines whether the rate-of-change in the SOH is greater than a threshold. The off-vehicle diagnostic unit requests additional information from the vehicle in response to the rate-of-change in the SOH being greater than the threshold. The additional information relating to operating parameter data associated with the component. The off-vehicle diagnostic unit receives the requested information and predicts a time-to-failure of the component.
摘要:
A cooperative diagnostic and prognosis system for generating a prognosis of at least one component in a vehicle. An in-vehicle diagnostic unit determines a diagnostic signature of the component each time an occurrence of a condition is triggered and transmits the diagnostic signature to an off-board diagnostic unit. The off-vehicle diagnostic unit determines a SOH of the component and a rate-of-change in the SOH of the component. The off-vehicle diagnostic unit determines whether the rate-of-change in the SOH is greater than a threshold. The off-vehicle diagnostic unit requests additional information from the vehicle in response to the rate-of-change in the SOH being greater than the threshold. The additional information relating to operating parameter data associated with the component. The off-vehicle diagnostic unit receives the requested information and predicts a time-to-failure of the component.