Abstract:
Provided is an apparatus and method for iteratively detecting and decoding a received signal in a wireless communication system. An apparatus for iterative detection and decoding (IDD) in a wireless communication system may determine a predetermined group to be updated in a first soft decision sequence, may transmit detection control information of the determined group, and may generate a second soft decision sequence based on a detection operation result of a predetermined received signal portion that is extracted based on the detection control information.
Abstract:
A system for acquiring data of a multi-channel signal includes a channel-voltage transmission module disposed in a shield room blocking electromagnetic waves, connected with a plurality of channels from which analog signals are output, and configured to generate a serial digital signal having information about an analog signal and information about a channel from which the analog signal is output, and an optical fiber cable through which the serial digital signal is transmitted from the channel-voltage transmission module to the outside of the shield room.
Abstract:
The present invention relates to a novel metallocene compound, a catalyst composition comprising the same, and to olefinic polymers produced using the same. The metallocene compound according to the present invention and the catalyst composition comprising the same can be used when producing olefinic polymers, have outstanding copolymerisation properties, and can produce olefinic polymers of high molecular weight. In particular, when the metallocene compound according to the present invention is employed, highly heat resistant block copolymers can be produced, and olefinic polymers can be produced which have a high melting point (Tm) even if the comonomer content is increased when producing the olefinic polymer.
Abstract:
A biomagnetic field measurement apparatus according to the present invention comprises: a head part provided with SQUID sensors (Superconducting Quantum Interference Device) for measuring a magnetocardiogram, the sensors being arranged in a row in a right and left direction at a lower end portion of the head part and being spaced apart by a predetermined space, and a non-magnetic liquid coolant container for cooling the SQUID sensors; an electronic circuitry part for controlling the SQUID sensors and measuring a signal; a signal processing software part for acquiring and storing the signal detected by the electronic circuitry part to a PC, calculating the signal and thus transforming the signal to a magnetic signal or a current signal, then mapping and displaying the transformed signal; and a bed part made of a non-magnetic material, mounted at a lower side of the head part to be spaced apart therefrom and provided with a platy sliding bed for measuring a magnetocardiogram by using the SQUID sensors of the head part at a state that a man to be measured is laid thereon, a sliding rail for allowing the sliding bed to move thereon in a front and rear direction, an up and down moving device for moving the sliding bed, for adjusting a measuring position of the man to be measured, in an up and down direction for adjusting the position of the SQUID sensors of the head part, a right and left moving device for moving the sliding bed in a right and left direction, and a front and rear moving device for moving the sliding bed in a front and rear direction by a predetermined space.The biomagnetic field measurement apparatus according to the present invention has advantages that since SQUID sensors are arranged in a row and a magnetocardiogram is measured by moving the bed in a predetermined space, it is not necessary for the high-priced SQUID sensors to be provided a lot in comparison with a conventional biomagnetic field measurement apparatus, and thus the apparatus is inexpensive, structurally simple and able to be downsized, a space taken up can be reduced and maintenance thereof is facilitated.
Abstract:
The present invention relates to a novel metallocene compound, a catalyst composition comprising the same, and to olefinic polymers produced using the same. The metallocene compound according to the present invention and the catalyst composition comprising the same can be used when producing olefinic polymers, have outstanding copolymerization properties, and can produce olefinic polymers of high molecular weight. In particular, when the metallocene compound according to the present invention is employed, highly heat resistant block copolymers can be produced, and olefinic polymers can be produced which have a high melting point (Tm) even if the comonomer content is increased when producing the olefinic polymer.