摘要:
A method for identifying ions that generated mass spectral data, comprises acquiring raw mass spectral data in profile mode containing at least one ion of interest; performing at least one of mass spectral calibration involving peak shape and a determination of actual peak shape function associated with the acquired raw mass spectral data; considering at least one possible elemental composition of the ion; calculating theoretical mass spectral data for said elemental composition using the actual peak shape function; performing a normalization between corresponding parts of the theoretical mass spectral data and that of the raw or calibrated mass spectral data; and displaying mass spectral congruence between at least two mass spectra where one spectrum is the normalized version of the other corresponding to said possible elemental composition. The unique display and method assist in readily identifying ions. A data storage medium having computer code thereon for causing a computer to performing the method; also in combination with a mass spectrometer.
摘要:
A method for analyzing data from a mass spectrometer comprising obtaining calibrated continuum spectral data by processing raw spectral data; obtaining library spectral data which has been processed to form calibrated library data; and performing a least squares fit, preferably using matrix operations (equation 1), between the calibrated continuum spectral data and the calibrated library data to determine concentrations of components in a sample which generated the raw spectral data. A mass spectrometer system (FIG. 1) that operates in accordance with the method, a data library of transformed mass spectra, and a method for producing the data library.
摘要:
A method for analyzing data from a mass spectrometer comprising obtaining calibrated continuum spectral data by processing raw spectral data; obtaining library spectral data which has been processed to form calibrated library data; and performing a least squares fit, preferably using matrix operations (equation 1), between the calibrated continuum spectral data and the calibrated library data to determine concentrations of components in a sample which generated the raw spectral data. A mass spectrometer system (FIG. 1) that operates in accordance with the method, a data library of transformed mass spectra, and a method for producing the data library.
摘要:
A method for analyzing data from a mass spectrometer comprising acquiring raw profile mode data containing one or more ions and their isotopes in a mass spectral range; calculating theoretical isotope distributions for all ions of interest including native or labeled ions based on their molecular composition; convoluting the theoretical isotope distributions with target peak shape function specified during instrument calibration, actual peak shape functions, or approximated peak shape functions, to obtain theoretical isotope profiles for all ions; constructing a peak component matrix of relevant theoretical isotope profiles included as peak components; performing a weighted multiple linear regression between the profile mode data and the peak component matrix; and reporting regression coefficients as relative concentrations for each of the ions, or ranking these ions based on fitting statistics as search results. A mass spectrometer system (FIG. 1) operating in accordance with the method. Medium having computer code for operating the spectrometer.
摘要:
A method for identifying ions that generated mass spectral data, comprises acquiring raw mass spectral data in profile mode containing at least one ion of interest; performing at least one of mass spectral calibration involving peak shape and a determination of actual peak shape function associated with the acquired raw mass spectral data; considering at least one possible elemental composition of the ion; calculating theoretical mass spectral data for said elemental composition using the actual peak shape function; performing a normalization between corresponding parts of the theoretical mass spectral data and that of the raw or calibrated mass spectral data; and displaying mass spectral congruence between at least two mass spectra where one spectrum is the normalized version of the other corresponding to said possible elemental composition. The unique display and method assist in readily identifying ions. A data storage medium having computer code thereon for causing a computer to performing the method; also in combination with a mass spectrometer.
摘要:
A method for obtaining at least one calibration filter for a Mass Spectrometry (MS) instrument system. Measured isotope peak cluster data in a mass spectral range is obtained for a given calibration standard. Relative isotope abundances and actual mass locations of isotopes corresponding thereto are calculated for the given calibration standard. Mass spectral target peak shape functions centered within respective mass spectral ranges are specified. Convolution operations are performed between the calculated relative isotope abundances and the mass spectral target peak shape functions to form calculated isotope peak cluster data. A deconvolution operation is performed between the measured isotope peak cluster data and the calculated isotope peak cluster data after the convolution operations to obtain the at least one calibration filter. Provisions are made for normalizing peak widths, combining internal and external calibration, and using selected measured peaks as standards. Aspects of the methods are applied to other analytical instruments.
摘要:
A method for obtaining at least one calibration filter for a Mass Spectrometry (MS) instrument system. Measured isotope peak cluster data in a mass spectral range is obtained for a given calibration standard. Relative isotope abundances and actual mass locations of isotopes corresponding thereto are calculated for the given calibration standard. Mass spectral target peak shape functions centered within respective mass spectral ranges are specified. Convolution operations are performed between the calculated relative isotope abundances and the mass spectral target peak shape functions to form calculated isotope peak cluster data. A deconvolution operation is performed between the measured isotope peak cluster data and the calculated isotope peak cluster data after the convolution operations to obtain the at least one calibration filter. Provisions are made for normalizing peak widths, combining internal and external calibration, and using selected measured peaks as standards. Aspects of the methods are applied to other analytical instruments.
摘要:
A method for determining elemental composition of ions from mass spectral data, comprising obtaining at least one mass measurement from mass spectral data; obtaining a search list of candidate elemental compositions whose exact masses fall within a given mass tolerance range from the accurate mass; reporting a probability measure based on a mass error; calculating an isotope pattern for each candidate elemental composition from the search list; constructing a peak component matrix including at least one of the isotope pattern and mass spectral data; performing a regression against at least one of isotope pattern, mass spectral data, and the peak component matrix; reporting a second probability measure for at least one candidate elemental composition based on the isotope pattern regression; and combining the two the probability measures into an overall probability measure. A method for determining elemental isotope ratios from mass spectral data.
摘要:
A method for obtaining at least one calibration filter for a Mass Spectrometry (MS) instrument system. Measured isotope peak cluster data in a mass spectral range is obtained for a given calibration standard. Relative isotope abundances and actual mass locations of isotopes corresponding thereto are calculated for the given calibration standard. Mass spectral target peak shape functions centered within respective mass spectral ranges are specified. Convolution operations are performed between the calculated relative isotope abundances and the mass spectral target peak shape functions to form calculated isotope peak cluster data. A deconvolution operation is performed between the measured isotope peak cluster data and the calculated isotope peak cluster data after the convolution operations to obtain the at least one calibration filter. Provisions are made for normalizing peak widths, combining internal and external calibration, and using selected measured peaks as standards. Aspects of the methods are applied to other analytical instruments.
摘要:
A method for analyzing data from a mass spectrometer comprising acquiring raw profile mode data containing one or more ions and their isotopes in a mass spectral range; calculating theoretical isotope distributions for all ions of interest including native or labeled ions based on their molecular composition; convoluting the theoretical isotope distributions with target peak shape function specified during instrument calibration, actual peak shape functions, or approximated peak shape functions, to obtain theoretical isotope profiles for all ions; constructing a peak component matrix of relevant theoretical isotope profiles included as peak components; performing a weighted multiple linear regression between the profile mode data and the peak component matrix; and reporting regression coefficients as relative concentrations for each of the ions, or ranking these ions based on fitting statistics as search results. A mass spectrometer system (FIG. 1) operating in accordance with the method. Medium having computer code for operating the spectrometer.