摘要:
A boiling water nuclear reactor comprises: a reactor containment vessel including a dry well and a wet well; a vent pipe connecting the dry well and the pressure suppression pool; a gravity-driven water injection pool to hold boric acid aqueous solution; an emergency core water-injection piping system for causing the boric acid aqueous solution in the gravity-driven water injection pool to fall so as to be injected into the reactor pressure vessel in case of reactor accident; a static containment vessel cooling system pool; a static containment vessel cooling system heat exchanger; a dry well connection pipe connecting an upper part of the static containment vessel cooling system heat exchanger and the dry well; and a gas vent pipe for discharging noncondensible gas in the static containment vessel cooling system heat exchanger into the inside of the pressure suppression pool.
摘要:
Core debris generated during a molten reactor core in a reactor containment vessel penetrating the reactor containment vessel is configured to be caught by a core catcher located beneath the reactor containment vessel which has a main body having first stage cooling water channels and second stage surrounded by cooling fins extending radially. The number of the second stage cooling channels is larger than that of the first stage cooling channels. Cooling water is supplied from a cooling water injection opening and distributed to the first cooling water channels at a distributor. An intermediate header is formed between the first and the second cooling water channels, and the cooling water is distributed to the second cooling water channels uniformly.
摘要:
A boiling water nuclear reactor comprises: a reactor containment vessel including a dry well and a wet well; a vent pipe connecting the dry well and the pressure suppression pool; a gravity-driven water injection pool to hold boric acid aqueous solution; an emergency core water-injection piping system for causing the boric acid aqueous solution in the gravity-driven water injection pool to fall so as to be injected into the reactor pressure vessel in case of reactor accident; a static containment vessel cooling system pool; a static containment vessel cooling system heat exchanger; a dry well connection pipe connecting an upper part of the static containment vessel cooling system heat exchanger and the dry well; and a gas vent pipe for discharging noncondensible gas in the static containment vessel cooling system heat exchanger into the inside of the pressure suppression pool.
摘要:
According to an embodiment, a pressurized water reactor plant has a primary system which includes: a reactor vessel for housing a reactor core which is cooled by a primary coolant, a single steam generator, a hot leg pipe for connecting the reactor vessel and the steam generator, cold leg pipes, at least two primary coolant pumps, and a pressurizer for pressurizing the primary coolant pressure boundary in which the primary coolant flows. The plant also has: a passive cooling and depressurization system which is a primary depressurization means for equalizing the primary system pressure to the secondary system pressure at the time of a tube rupture accident of the steam generator, and a reactor containment vessel containing the primary system and cooling the primary system by air cooling. Thus, a compact pressurized water rector with high economic efficiency, safety, and reliability can be provided.
摘要:
An emergency core cooling system comprises first and second safety divisions for an active emergency core cooling system. Each of the first and second safety divisions is provided with a high-pressure core cooling system and a low-pressure core cooling system, which also acts as a residual heat removal system.
摘要:
An emergency core cooling system comprises first and second safety divisions for an active emergency core cooling system. Each of the first and second safety divisions is provided with a high-pressure core cooling system and a low-pressure core cooling system, which also acts as a residual heat removal system.
摘要:
According to an embodiment, a nuclear reactor containment vessel has: a primary reactor containment vessel which contains a nuclear pressure vessel; a secondary reactor containment vessel and which is disposed outside the primary reactor containment vessel which has the pressure resistant properties and the leak-tightness which are equivalent to those of the primary reactor containment vessel; an air bag which is disposed within the secondary reactor containment vessel and which, when a failure occurs in primary reactor containment vessel, expands while receiving and encapsulating a high pressure gas discharged from the inside of the primary reactor containment vessel; and a gas phase vent pipe which connects the primary reactor containment vessel and the air bag.
摘要:
Illumination devices (7a) and (7b) which irradiate light having a wavelength of 1.1 μm or less are arranged on a front surface and a rear surface of a cover (8) of a dicing device (1). After a wafer is placed on a dicing stage (3), when the wafer is diced by a blade (4a) attached to a spindle (5), light is irradiated on an entire surface of an upper surface (element forming surface) of the wafer by the illumination devices (7a) and (7b). At this time, an illuminance of light on the wafer is set at 70 lux or more and 2000 lux or less. By this means, during a dicing operation, an area to be a light-shielded area by the spindle (5) or the like is not present on the wafer.
摘要:
Illumination devices (7a) and (7b) which irradiate light having a wavelength of 1.1 μm or less are arranged on a front surface and a rear surface of a cover (8) of a dicing device (1). After a wafer is placed on a dicing stage (3), when the wafer is diced by a blade (4a) attached to a spindle (5), light is irradiated on an entire surface of an upper surface (element forming surface) of the wafer by the illumination devices (7a) and (7b). At this time, an illuminance of light on the wafer is set at 70 lux or more and 2000 lux or less. By this means, during a dicing operation, an area to be a light-shielded area by the spindle (5) or the like is not present on the wafer.
摘要:
Illumination devices (7a) and (7b) which irradiate light having a wavelength of 1.1 μm or less are arranged on a front surface and a rear surface of a cover (8) of a dicing device (1). After a wafer is placed on a dicing stage (3), when the wafer is diced by a blade (4a) attached to a spindle (5), light is irradiated on an entire surface of an upper surface (element forming surface) of the wafer by the illumination devices (7a) and (7b). At this time, an illuminance of light on the wafer is set at 70 lux or more and 2000 lux or less. By this means, during a dicing operation, an area to be a light-shielded area by the spindle (5) or the like is not present on the wafer.