摘要:
In a magnetic recording medium including an underlayer and a magnetic layer formed sequentially on a substrate, the underlayer is composed of a composite underlayer having an at least two-layered structure, the underlayer on the side of the substrate is made of a material providing low modulation to the magnetic recording medium while the underlayer on the side of the magnetic layer is made of a material providing a high S/N ratio to the medium. This makes it possible to obtain a magnetic recording medium having low modulation and high S/N ratio.
摘要:
A magnetic recording medium including a substrate and a magnetic layer on the substrate which is a Co-based alloy including Pt and/or Ir, including at least one of Ti, Zr, Hr, V, Nb, Ta, Cr, Mo, W, Ge, and Si, and including oxygen. A magnetic memory apparatus including the magnetic recording medium.
摘要:
A magnetic recording medium in which a non-magnetic intermediate layer made of an alloy substantially composed of at least one element selected from the group consisting of Zr, Hf, Ta, Ti and Nb is disposed between a magnetic layer formed on a substrate and a non-magnetic overcoat layer formed on the magnetic layer. Since the impact shock resistance and the vibration resistance of the magnetic recording medium can be improved and the head-medium spacing of the magnetic disc apparatus can be decreased extremely by disposing the non-magnetic intermediate layer, it can provide a increase in the recording density, particularly, in a thin film type magnetic recording medium using a metallic magnetic thin film or metal oxide thin film as the magnetic layer. It can also improve the corrosion resistance in the case of a metallic magnetic thin film type medium.
摘要:
A magnetic recording medium for longitudinal recording with a low media noise, a high S/N ratio and high reliabilities in corrosion resistance is disclosed. By making a magnetic layer from a Co-based alloy comprising 1 to 35 at. % of at least one element selected from the group consisting of Pt and Ir, 1 to 17 at. % of at least one element selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Ge and Si, except for Si, whose concentration is 1 to 40 at. and 0.1 to 10 at. of oxygen, a magnetic recording medium for longitudinal recording having an inplane coercivity of 1,200 Oe or more and a coercive squares of not more than 0.85 is obtained. A process for producing the magnetic recording medium for longitudinal medium and a magnetic memory apparatus using the magnetic recording medium for longitudinal recording are also disclosed.
摘要:
A magnetic recording medium including a substrate and a magnetic layer on the substrate which is a Co-based alloy including Pt and/or Ir, including at least one of Ti, Zr, Hr, V, Nb, Ta, Cr, Mo, W, Ge, and Si, and including oxygen. A magnetic memory apparatus including the magnetic recording medium.
摘要:
A magnetic recording medium for longitudinal recording with a low media noise, a high S/N ratio and high reliabilities in corrosion resistance is disclosed. By making a magnetic layer from a Co-based alloy comprising 1 to 35 at. % of at least one element selected from the group consisting of Pt and Ir, 1 to 17 at. % of at least one element selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Ge and Si, except for Si, whose concentration is 1 to 40 at. %, and 0.1 to 10 at. % of oxygen, a magnetic recording medium for longitudinal recording having an inplane coercivity of 1,200 Oe or more and a coercive squares of not more than 0.85 is obtained.
摘要:
A magnetic recording medium for longitudinal recording with a low media noise, a high S/N ratio and high reliabilities in corrosion resistance is disclosed. By making a magnetic layer from a Co-based alloy comprising 1 to 35 at. % of at least one element selected from the group consisting of Pt and Ir, 1 to 17 at. % of at least one element selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W. Ge and Si, except for Si, whose concentration is 1 to 40 at. %, and 0.1 to 10 at. % of oxygen, a magnetic recording medium for longitudinal recording having an inplane coercivity of 1,200 Oe or more and a coercive squares of not more than 0.85 is obtained.A process for producing the magnetic recording medium for longitudinal medium and a magnetic memory apparatus using the magnetic recording medium for longitudinal recording are also disclosed.
摘要:
Disclosed are longitudinal recording media comprising a composite magnetic film formed on a nonmagnetic substrate directly or through a nonmagnetic underlayer, in which all of magnetic thin films constituting the composite magnetic film are magnetically connected, the composite magnetic film has a single in-plane coercivity, and the in-plane coercivity is greater than the in-plane coercivity of a longitudinal magnetically anisotropic magnetic thin film constituting a magnetic thin film nearest to an information recording side among the magnetic thin films constituting the composite film.
摘要:
Disclosed are a magnetic recording medium having a magnetic recording layer formed of a magnetic thin film in which rotational hysteresis integral R.sub.H is within a range of from 0.4 to 1.3 in the measurement by a torque magnetometer, and a continuous magnetic recording medium in which crystal grains are substantially randomly arranged on the upper surface of a magnetic recording layer or on the surface of a non-magnetic subbing layer, and in which each of the crystal grains is made to be in the form of an ellipsoid or needle and to have a length-ways axial ratio of a major axis to a minor axis not smaller than 2, more preferably, not smaller than 4.
摘要:
A magnetic recording medium that uses, as a protective coating layer provided on a magnetic layer for magnetically recording signals, a layer made of a nonmagnetic material consisting of two ore more elements of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W, and one or more elements of N, C, O, and B, or made of a magnetic material consisting of one or more elements of Co, Fe, Ni, and Gd, one or more elements of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W, and one or more elements of N, C, O, B, and Si is excellent in sliding endurance. When the protective coating layer is made of the nonmagnetic material, the magnetic recording medium is also excellent in corrosion resistance, and when the protective coating layer is made of the magnetic material, the spacing between a magnetic head and the magnetic recording medium can advantageously be made large. Both the cases are high in reliability, and suitable for high density magnetic recording. The magnetic recording medium can be used in combination with a magnetic head that uses a metal magnetic alloy as at least part of the magnetic core to provide an excellent magnetic storage.