摘要:
A cell assembly is formed by stacking a first cell and a second cell. In the cell assembly, oxygen-containing gas flow passages are connected in series by an intermediate oxygen-containing gas flow passage, and fuel gas flow passages are connected in series by an intermediate fuel gas flow passage. An additional oxygen-containing gas is supplied to an oxygen-containing gas passage which includes the intermediate oxygen-containing gas flow passage. An additional fuel gas is supplied to a fuel gas passage which includes the intermediate fuel gas flow passage.
摘要:
A cell assembly has reactant gas passages connected in series in first and second unit cells, and oxygen-containing gas inlets, intermediate oxygen-containing gas inlets, oxygen-containing gas outlets, intermediate oxygen-containing gas outlets which are defined in the first and second unit cells. The oxygen-containing gas inlets and the intermediate oxygen-containing gas inlets are disposed upwardly of the oxygen-containing gas outlets and the intermediate oxygen-containing gas outlets. The oxygen-containing gas outlets and the intermediate oxygen-containing gas outlets are disposed at least partly below electric energy generating surfaces of the first and second unit cells.
摘要:
An intermediate plate is interposed between first and second sub-stacks. The intermediate plate has, defined in a surface thereof, an oxygen-containing gas mixing passage interconnecting an oxygen-containing gas outlet in the first sub-stack which is located upstream and an oxygen-containing gas inlet in the second sub-stack which is located downstream. In the first and second sub-stacks, an oxygen-containing gas is supplied from the oxygen-containing gas inlet and discharged to the oxygen-containing gas outlet at all times.
摘要:
A fuel cell stack (10) includes a first sub-stack (12), a second sub-stack (14), and a third sub-stack (16) disposed in the flow direction of an oxidizing gas. An intermediate plate (18a) is interposed between the first and second sub-stacks (12, 14), and an intermediate plate (18b) is interposed between the second and third sub-stacks (14, 16). In this fuel stack (10), the flow of an oxidizing gas is set such that the oxidizing gas flows in series in the direction from the first sub-stack (12) to the third sub-stack (16). Between the sub-stacks additional oxidizing gas supplies (70,74) are provided through which oxidizing gas of lower humidity than the humidity of the oxidizing gas entering the first sub-stack is supplied. This arrangement allows an efficient management of the humidity water content of the oxidizing gas with sufficient moisturizing of the solid polymer membrane whilst avoiding excessive condensation of water vapour within the stack.
摘要:
Each of cooling medium flow passages provided for a first separator includes single main flow passage grooves communicating with a cooling medium inlet and a cooling medium outlet respectively, and branched flow passage grooves formed and branched between the main flow passage grooves. Accordingly, it is possible to greatly decrease the flow passage length. Therefore, it is possible to effectively avoid the occurrence of flow passage pressure loss in the superficial direction of the first separator, and it is possible to improve the system efficiency of the power generation.
摘要:
A unit cell has a membrane electrode assembly. The membrane electrode assembly includes a cathode, and an anode, and a solid polymer electrolyte fuel cell interposed between the cathode and the anode. The membrane electrode assembly is interposed between a first separator and a second separator. A thin cooling plate is interposed between the second separator and another first separator. A first coolant flow passage and a second coolant flow passage are formed on both surfaces of the cooling plate. The coolant flows along one surface of the cooling plate, and turns back at an end of the cooling plate to flow along the other surface of the cooling plate.
摘要:
A first separator has its surface which is designed to have a rectangular configuration. A fuel gas flow passage for making communication between a fuel gas inlet and a fuel gas outlet is provided on the surface. The fuel gas flow passage is designed to have a meandering configuration so that it extends in a long side direction and it turns back on a short side to allow a fuel gas to flow in the direction of the gravity. Accordingly, it is possible to effectively shorten a size in the height direction, and it is possible to obtain desired power generation performance with a simple structure.
摘要:
First gas flow passage grooves communicating with a fuel gas inlet and second gas flow passage grooves communicating with a fuel gas outlet are provided on a surface of a first separator. First and second united sections are provided at merged portions of the first gas flow passage grooves and the second gas flow passage grooves. Accordingly, the number of gas flow passage grooves is throttled from the side of the fuel gas inlet to the side of the fuel gas outlet. The turbulence is allowed to occur at the throttled portion to make it possible to improve the gas diffusion performance.
摘要:
A fuel gas passage, an oxygen-containing gas passage, and a coolant passage extend through a fuel cell stack. Each of the fuel gas passage and the oxygen-containing gas passage is formed by serially connecting passages between the first through third fuel cell modules. The fuel gas flows through the fuel gas passage, and the oxygen-containing gas flows through the oxygen-containing gas passage from the first fuel cell module toward the third fuel cell module. The coolant passage is formed by serially connecting passages between the first through third fuel modules. The coolant flows through the coolant passage from the third fuel cell module toward the first fuel cell module. The direction of the flow of the coolant is opposite to the direction of the flows of the fuel gas and the oxygen-containing gas.
摘要:
A first separator of a unit cell and a second separator of another unit cell and are disposed adjacent to each other in a stacked assembly. Crest surfaces of straight sections of first hollow ridges of the first separator are in contact with crest surfaces of second hollow ridges of the second separator, and crest surfaces of bent sections of the first hollow ridges are spaced from crest surfaces of the second hollow ridges. The spaced crest surfaces allow first troughs of the first separator and second troughs of the second separator to communicate with each other, providing communication passages between the first separator and the second separator. Cooling water is passed through the communication passages.