摘要:
A compound-eye imaging device comprises an imaging device body having 9 optical lenses and a solid-state imaging element for imaging unit images formed by the optical lenses. Assuming that the combination of each of the optical lenses with a corresponding divided area of the solid-state imaging element to image each of the corresponding unit images is an imaging unit, thereby forming multiple imaging units, the respective imaging units have randomly different optical imaging conditions. For example, the focal lengths of the 9 optical lenses are set to have random values in which the optical lenses are arranged to have random distances between adjacent ones thereof in a direction parallel to the major surface of the solid-state imaging element. This compound-eye imaging device substantially prevents unit images formed by respective imaging units from being the same, making it possible to easily increase the definition of a reconstructed image.
摘要:
A panoramic imaging device comprises: a photodetector array; a lens array having, on one plane, a center lens for receiving light in a front range of 36° to form a central unit image on the photodetector array, and left and right side lenses for receiving lights in left and right ranges each of 72° in capture angle of 180°; and four prisms in two pairs placed facing the side lenses. The two pairs of left and right prisms (more inclined and less inclined pairs) collect lights in divided two pairs of left and right ranges each of 36° in the 72° range (pairs closer to, and farther from, the front range), respectively, to form four side unit images on the photodetector array which are combined with the central unit image to reproduce a panoramic image without using wide-angle lenses or complex image correction process.
摘要:
A panoramic imaging device comprises: a lens array with lenses in a matrix; an imaging element; and prisms for mirror-reflecting lights entering in left/right ranges in a capture range to guide them to side lenses in left/right columns. Light in a front range is inverted up/down by center lenses and formed as up/down inverted images on the imaging element. Lights in the left/right ranges are inverted up/down and left/right by the prisms with the side lenses and formed as up/down and left/right inverted images on the imaging element. The images in the left/right ranges are read in one direction. The images in the front range are read in an opposite direction. The read images are combined as is, without inverting the images, to reproduce a panoramic image. This can prevent the entire device from becoming large in volume, and imaging processing from becoming complex.
摘要:
An object distance deriving device comprises: a compound-eye imaging device having imaging units with optical lenses randomly arranged for the respective imaging units; and a distance calculation unit to calculate an object distance using images captured by the compound-eye imaging device. The distance calculation unit: sets temporary distances z (S1); calculates an imaging process matrix [Hz] according to a temporary distance z (S2); estimates a high-resolution image by super-resolution processing using the imaging process matrix [Hz] (S3); uses the estimated high-resolution image to calculate an evaluation value distribution E for evaluating the temporary distance z (S4); repeats steps S2 to S4 for all temporary distances z (S5); and determines, as an object distance, one temporary distance z giving a minimum evaluation value in the evaluation value distributions E. This makes it possible to accurately derive the object distance even if the baseline length of the compound-eye imaging device is limited.
摘要:
A compound-eye imaging device comprises nine optical lenses arranged in a matrix array of three rows and three columns, and a solid-state imaging element for capturing unit images formed by the optical lenses. A stray light blocking member having a rectangular-shaped window is provided on the capture zone side of the optical lenses, eliminating the need to provide, between the solid-state imaging element and the optical lenses, walls by which light propagation paths of lights emitted from the optical lenses are partitioned from each other. The stray light blocking member blocks incident lights in a range outside each effective incident view angle range of each optical lens. This prevents the light entering each optical lens to form a unit image from interfering with other unit images formed by adjacent optical lenses, thereby obtaining a good quality image, without complicating the manufacturing process and increasing the cost thereof.
摘要:
A compound-eye imaging device comprises: an optical lens array with integrated multiple optical lenses; a photodetector array for imaging images formed by the optical lenses; and a light shielding block placed between the two arrays for partitioning a space between the two arrays into a matrix of spaces as seen on a plane perpendicular to the optical axis of each optical lens so as to prevent lights emitted from the optical lenses from interfering each other. The light shielding block is formed of flat unit plates of two kinds having different thicknesses and stacked between the optical lens array and the photodetector array. Since the light shielding block is formed of stacked flat unit plates, it is easy to manufacture a light shielding block having apertures with dense structure having a small distance between adjacent apertures, and also easy to adapt to variations in focal length of the optical lenses.
摘要:
A compound-eye imaging device comprising: an optical lens array with multiple integrated optical lenses having mutually parallel optical axes; a photodetector array placed at a predetermined distance from the optical lens array for imaging multiple images (referred to as single-eye images) formed by the optical lenses; and a microprocessor for reading the single-eye images imaged by the photodetector array. The image reading mode of the microprocessor is switchable between an all-read mode in which all the single-eye images on the photodetector array are sequentially read, and a partial-read mode in which a part of the single-eye images thereon are selectively read. The image reading speed of the microprocessor is changeable. The compound-eye imaging device enables a high frame rate and a high resolution imaging while reducing an increase in a clock frequency for the frame rate and thus reducing an increase in power consumption.
摘要:
A compound-eye imaging device comprises: an optical lens array with integrated optical lenses; a stop member for shielding unnecessary ambient light from entering the optical lenses; a photodetector array formed of a semiconductor substrate and placed at a predetermined distance from the optical lens array for imaging images formed by the optical lenses; a light shielding block placed between the two arrays; and an optical filter for transmitting light from the optical lenses in a specific wavelength range. The optical filter is a part of, and integral with, the photodetector array. The optical filter can be a deposited film formed by depositing silicon oxide and titanium oxide on a glass plate provided for protecting a surface of, and integrally formed on, the semiconductor substrate. This enables to easily omit an optical filter separately provided between the two arrays, thereby reducing the thickness of the imaging device.
摘要:
A skin area detection imaging device for detecting a skin area of a human body as an object comprises: two optical lenses to form two unit images on an imaging element by collecting light from the object illuminated by near-infrared light; a rolling shutter for sequentially reading the unit images; and two LEDs for emitting lights with different wavelengths (850 nm and 940 nm) in the near-infrared range. A microprocessor switches on the two LEDs when reading the two unit images, respectively. The skin area of one read unit image is displayed with brightness different from that of the other unit image based on difference in reflectance to various wavelengths of near-infrared light. The microprocessor compares the two unit images to determine, as a skin area, an area having difference in brightness larger than a predetermined value. This makes it possible to detect the skin area in a short time.
摘要:
A panoramic imaging device comprises: a photodetector array; a lens array having, on one plane, a center lens for receiving light in a front range of 36° to form a central unit image on the photodetector array, and left and right side lenses for receiving lights in left and right ranges each of 72° in capture angle of 180°; and four prisms in two pairs placed facing the side lenses. The two pairs of left and right prisms (more inclined and less inclined pairs) collect lights in divided two pairs of left and right ranges each of 36° in the 72° range (pairs closer to, and farther from, the front range), respectively, to form four side unit images on the photodetector array which are combined with the central unit image to reproduce a panoramic image without using wide-angle lenses or complex image correction process.