摘要:
Two hybrid message decoders for low-density parity-check (LDPC) codes are proposed. One decoder uses a posteriori probability ratio (APPR) and a posteriori probability difference (APPD), and the other decoder uses a logarithm a posteriori probability ratio (LAPPR) and a logarithm a posteriori probability difference (LAPPD) as hybrid message. Since the variable node and check node processing can be readily done using APPR and APPD, respectively, the proposed decoders have lower complexity than the conventional decoder that uses LAPPR only as a message.
摘要:
Two hybrid message decoders for low-density parity-check (LDPC) codes are proposed. One decoder uses a posteriori probability ratio (APPR) and a posteriori probability difference (APPD), and the other decoder uses a logarithm a posteriori probability ratio (LAPPR) and a logarithm a posteriori probability difference (LAPPD) as hybrid message. Since the variable node and check node processing can be readily done using APPR and APPD, respectively, the proposed decoders have lower complexity than the conventional decoder that uses LAPPR only as a message.
摘要:
A novel ultra-wide bandwidth receiver structure dubbed the “zonal” receiver is proposed to detect time-hopping ultra-wide bandwidth signals in multiple access interference channels. The zonal receiver outperforms the conventional matched filter ultra-wide bandwidth receiver and the recently proposed soft-limiting ultra-wide bandwidth receiver when only MAI is present, or AWGN is negligible compared to MAI. In more practical mixed MAI-plus-AWGN environments, the zonal ultra-wide bandwidth receiver achieves better performance than the conventional matched filter ultra-wide bandwidth receiver, the recently proposed soft-limiting ultra-wide bandwidth receiver, and the recently proposed adaptive threshold soft-limiting ultra-wide bandwidth receiver. In multipath fading UWB channels, a new Rake receiver based on the zonal UWB receiver design has been proposed, this new Rake receiver can achieve better BER performance than the conventional matched filter based Rake receiver.
摘要:
Space-time code, and methods for constructing space-time codes are provided. The space-time coder performs a respective linear transformation on each of P sets of K modulated symbols of a modulated symbol stream to produce P sets of T linearly transformed symbols, applies a respective phase rotation to each set of T linearly transformed symbols to produce a respective set of T phase rotated symbols, and performs a threading operation on the sets of T phase rotated symbols to produce P threaded sequences that define M output sequences. During each of T symbol periods, a respective one of the P threaded sequences includes a symbol from one of the P sets of phase rotated symbols. At least one symbol from each set of phase rotated symbols appears in each output sequence, where M>=2, 2 =M and M>=K.
摘要:
A UWB receiver dubbed the “p-order metric” receiver (p-omr) is proposed to detect the time-hopping ultra-wide bandwidth signal in multiple access interference channels. The receiver acquires a signal over a wireless channel, adaptively selects a shaping parameter, p, over time and generates a first set of partial statistics by, for each of a plurality N of observations per symbol, using the shaping parameter to modify the exponential order of the approximation of the noise plus multiple access interference probability density function, f(x), used in the receiver model.
摘要:
Pilot symbol assisted modulation (PSAM) techniques for Rayleigh and Rician fading channels are derived. Previous techniques implement PSAM signal detectors as an ad-hoc design, using pilot symbols to first estimate channel gain, and then using channel gain estimates in a conventional coherent detector to make data decisions. Although this structure may be effective for binary phase shift keying in Rayleigh fading, it is suboptimal for Rician fading and for 16-ary quadrature amplitude modulation in Rayleigh fading. According to techniques disclosed herein, a PSAM signal detector jointly processes pilot symbols and data symbols. The performance of signal detectors according to embodiments of the invention is analyzed and compared with that of conventional detectors. Numerical results are presented to show that the performance gain of a proposed new PSAM signal detector over conventional PSAM detectors can be as much as 2 or 3 dB for Rician fading in some cases.
摘要:
A dual-branch decorrelator receiver is provided in which decorrelation is performed with a simple addition and subtraction. The same receiver finds application in pre-processing signals that may not be correlated.
摘要:
Space-time code, and methods for constructing space-time codes are provided. The space-time coder performs a respective linear transformation on each of P sets of K modulated symbols of a modulated symbol stream to produce P sets of T linearly transformed symbols, applies a respective phase rotation to each set of T linearly transformed symbols to produce a respective set of T phase rotated symbols, and performs a threading operation on the sets of T phase rotated symbols to produce P threaded sequences that define M output sequences; the threading operation being such that each threaded sequence is an allocation of output sequences over time of a respective one of the P sets of T phase rotated symbols in which all of the output sequences are used by each threaded sequence; during each of T symbol periods, a respective one of the P threaded sequences includes a symbol from one of the P sets of phase rotated symbols; and at least one symbol from each set of phase rotated symbols appears in each output sequence; where M>=2, 2 =M and M>=K.
摘要:
Space-time code, and methods for constructing space-time codes are provided. The space-time coder performs a respective linear transformation on each of P sets of K modulated symbols of a modulated symbol stream to produce P sets of T linearly transformed symbols, applies a respective phase rotation to each set of T linearly transformed symbols to produce a respective set of T phase rotated symbols, and performs a threading operation on the sets of T phase rotated symbols to produce P threaded sequences that define M output sequences; the threading operation being such that each threaded sequence is an allocation of output sequences over time of a respective one of the P sets of T phase rotated symbols in which all of the output sequences are used by each threaded sequence; during each of T symbol periods, a respective one of the P threaded sequences includes a symbol from one of the P sets of phase rotated symbols; and at least one symbol from each set of phase rotated symbols appears in each output sequence; where M>=2, 2 =M and M>=K.