摘要:
A domino SRAM array restore pulse generation system launches the work decode line by the same local clock as the restore pulse, thus eliminating any race issues with the word line select. This system allows the global bit select (or column select) to have fast activation by releasing the reset signal (with the earliest arriving array clock, ck1), while guaranteeing almost perfect tracking with the bit decode system. This allows for the widest possible write window; earliest release of the pre-charge in the global column select, and resetting only after the bit decode system is deactivated.
摘要:
A programmable delay circuit that delays the C2 clock signal by a variable amount that allows the output from the L1 latch to be captured even when there is a large delta between the L1 latch and its L2 latch. This allows the C2 signal to be adjusted within the system dependent upon the amount of cycle steal is needed. The C2 clock delay is inhibited during scan operation to prevent glitches and the trailing edge of the delayed C2 is controlled to maintain a constant C2 duty cycle.
摘要:
A domino SRAM array restore pulse generation system launches the word decode line by the same local clock as the restore pulse, thus eliminating any race issues with the word line select. This system allows the global bit select (or column select) to have fast activation by releasing the reset signal (with the earliest arriving array clock, ckl), while guaranteeing almost perfect tracking with the bit decode system. This allows for the widest possible write window; earliest release of the pre-charge in the global column select, and resetting only after the bit decode system is deactivated.
摘要:
A domino SRAM is provided with active pull-up PFET devices that overwhelm “slow to write but very fast to read” cells and allow the cells to recover from timing mismatch situations. This approach allows the traditional “bit select” clamp to actively control the “local select” through “wired-or” PFET pull-up transistors. Separate read and write global “bit line” pairs allow the read and write performance to be optimized independently.