摘要:
The presently disclosed embodiments relate generally to layers that are useful in imaging apparatus members and components, for use in electrostatographic, including digital, apparatuses. More particularly, the embodiments pertain to an improved electrostatographic imaging member incorporating a carbon nano tube dispersion into a high molecular weight polycarbonate and an anti-static copolymer with polyester, polycarbonate, and polyethylene glycol units in a formulation for the anti-curl back coating layer which provides a conductively suitable and stable dispersion coating solution for making an optically suitable anti-curl back coating layer.
摘要:
The presently disclosed embodiments relate generally to layers that are useful in imaging apparatus members and components, for use in electrostatographic, including digital, apparatuses. More particularly, the embodiments pertain to an improved electrostatographic imaging member incorporating a carbon nano tube dispersion into a high molecular weight polycarbonate and an anti-static copolymer with polyester, polycarbonate, and polyethylene glycol units in a formulation for the anti-curl back coating layer which provides a conductively suitable and stable dispersion coating solution for making an optically suitable anti-curl back coating layer.
摘要:
The presently disclosed embodiments relate generally to layers that are useful in imaging apparatus members and components, for use in electrostatographic, including digital, apparatuses. More particularly, the embodiments pertain to an improved electrostatographic imaging member incorporating a thermoplastic material pre-compounded to impart conductivity to the anti-curl back coating layer and may also contain an adhesion promoter which provides a conductively and optically anti-curl back coating layer. The conductive anti-curl back coating of the present disclosure may be formulated to have a single layer, dual layers, or triple layers.
摘要:
The presently disclosed embodiments relate generally to the formulation of an anticurl back coating layer that renders imaging apparatus flexible members and components their desirable flatness, for use in electrostatographic, including digital apparatuses. More particularly, the embodiments pertain to an imaging member comprising an anticurl back coating layer formulated to comprise conductive carbon nanotubes dispersion in a polymer blend comprising three film-forming thermoplastic polymers to: (a) render electrical conductivity effect for tribo-electrical charge elimination (b) impart static dissipation capability, and (c) provide surface energy lowering effect for contact friction reduction to ease imaging member belt drive as well as cutting tribo-electrical charge build-up under normal imaging member belt operational conditions in the field.
摘要:
The presently disclosed embodiments relate generally to layers that are useful in imaging apparatus members and components, for use in electrostatographic, including digital, apparatuses. More particularly, the embodiments pertain to an improved electrostatographic imaging member incorporating a thermoplastic material pre-compounded to impart conductivity to the anti-curl back coating layer and may also contain an adhesion promoter which provides a conductively and optically anti-curl back coating layer. The conductive anti-curl back coating of the present disclosure may be formulated to have a single layer, dual layers, or triple layers.
摘要:
The presently disclosed embodiments relate generally to the formulation of an anticurl back coating layer that renders imaging apparatus flexible members and components their desirable flatness, for use in electrostatographic, including digital apparatuses. More particularly, the embodiments pertain to an imaging member comprising an anticurl back coating layer formulated to comprise conductive carbon nanotubes dispersion in a polymer blend comprising three film-forming thermoplastic polymers to: (a) render electrical conductivity effect for tribo-electrical charge elimination (b) impart static dissipation capability, and (c) provide surface energy lowering effect for contact friction reduction to ease imaging member belt drive as well as cutting tribo-electrical charge build-up under normal imaging member belt operational conditions in the field.
摘要:
Improved electrophotographic imaging members which pertain to the incorporation of a fluoroketone into the charge transport layer to achieve a structurally simplified flexible electrophotographic imaging member that remains flat without the need for an anticurl back coating layer. The imaging member is both more slippery and has a reduced coefficient of friction, thus extending service life.
摘要:
Disclosed is an ink jet printhead comprising a plurality of channels, wherein the channels are capable of being filled with ink from an ink supply and wherein the channels terminate in nozzles on one surface of the printhead, the surface being coated with a coating composition comprising a siloxane-etherimide copolymer and a fluorinated nonionic surfactant.
摘要:
Disclosed is an ink jet printhead comprising a plurality of channels, wherein the channels are capable of being filled with ink from an ink supply and wherein the channels terminate in nozzles on one surface of the printhead, the surface being coated with a coating composition comprising a fluorinated poly(amide-imide) copolymer.
摘要:
The present embodiments are generally directed to layers that are useful in imaging apparatus members and components, for use in electrophotographic, including digital, apparatuses. More particularly, the embodiments pertain to an electrophotographic imaging member having a novel charge transport layer formed from a coating solution that is doped with specific solvents which provides a charge transport layer with superior electrical properties, and methods for making the same. In particular, the coating solution is doped with a small amount of an aprotic organic solvent.