摘要:
An image forming apparatus includes a latent image forming unit in which a light beam scans in a second scan region wider than a first scan region. The light beam is modulated in accordance with an image signal within the range of the first scan region for every scanning cycle and guided onto the effective image region to form a line latent image. A write timing adjuster adjusts a write start position for writing a latent image along the main scanning direction, based on a time difference between a first detection signal output when a first light beam scanning away from the effective image region moves passed an optical sensor, and a second detection signal output when a second light beam scanning toward the effective image region moves passed the optical sensor.
摘要:
An image forming method which generates a video signal corresponding to an image forming command based on a video clock signal, modulates a light beam according to the video signal, and scans the modulated light beam along a main scanning direction by means of an oscillation mirror which resonates based on a drive signal, so as to form a latent image in an effective image region of a latent image carrier, the method includes: synchronizing the drive signal with the video clock signal to synchronize a detection signal with the vide clock signal, the detection signal being output from a detector which detect the light beam scanned in the main scanning direction in a region away from an effective scan region which corresponds to the effective image region; controlling a resonant frequency of the oscillation mirror based on the detection signal so that the resonant frequency of the oscillation mirror almost coincides with the frequency of the drive signal; and adjusting a position, at which the latent image is written over the latent image carrier, is adjusted by adjusting output timing of the video signal based on the detection signal from the detector.
摘要:
A light scanning apparatus makes a light beam scan along a main scanning direction on an effective scanning region which has a predetermined width. The apparatus comprises: a light source which emits the light beam; a deflector which includes an oscillation mirror which oscillates about an oscillatory axis which is orthogonal or approximately orthogonal to the main scanning direction, deflects the light beam emitted from the light source using the oscillation mirror, and makes the light beam scan a second scanning range which contains but extends beyond a first scanning range which corresponds to the effective scanning region; a detector which detects the scanning light beam which moves through a position which is outside the first scanning range but is within the second scanning range, and outputs a signal; and a controller which controls a mirror drive signal fed to the oscillation mirror based on the output signal from the detector and accordingly adjusts the amplitude of the oscillation mirror. In the apparatus above, the controller stops driving the oscillation mirror when confirming based on the output signal that the oscillation mirror is under abnormal control.
摘要:
An image forming apparatus includes: a latent image carrier that includes an effective image region which has a predetermined width along a main scanning direction; a latent image forming unit that has a structure in which a deflection mirror surface makes a light beam scan in a second scan region which is wider than a first scan region which corresponds to the effective image region, that modulates the light beam in accordance with an image signal within the range of the first scan region for every scanning cycle, and that guides the modulated light beam onto the effective image region, thereby forming a line latent image which corresponds to the image signal; an optical sensor that detects a scanning light beam, which moves outside the first scan region within the second scan region, to output a signal; and a write timing adjuster that controls the timing of start modulating the light beam and accordingly adjusts a write start position for start writing a latent image along the main scanning direction, based on a time difference between a first detection signal, which the optical sensor outputs as a first light beam scanning away from the effective image region moves passed the optical sensor, and a second detection signal, which the optical sensor outputs after outputting the first detection signal when a second light beam scanning toward the effective image region moves passed the optical sensor.
摘要:
A light scanning apparatus makes a light beam scan along a main scanning direction on an effective scanning region which has a predetermined width. The apparatus comprises: a light source which emits the light beam; a deflector which includes an oscillation mirror which oscillates about an oscillatory axis which is orthogonal or approximately orthogonal to the main scanning direction, deflects the light beam emitted from the light source using the oscillation mirror, and makes the light beam scan a second scanning range which contains but extends beyond a first scanning range which corresponds to the effective scanning region; a detector which detects the scanning light beam which moves through a position which is outside the first scanning range but is within the second scanning range, and outputs a signal; and a controller which controls a mirror drive signal fed to the oscillation mirror based on the output signal from the detector and accordingly adjusts the amplitude of the oscillation mirror. In the apparatus above, the controller stops driving the oscillation mirror when confirming based on the output signal that the oscillation mirror is under abnormal control.
摘要:
A light scanning apparatus makes a light beam scan along a main scanning direction on an effective scanning region having a predetermined width. A deflector includes an oscillation mirror which deflects the light beam and makes the light beam scan a second scanning range which contains but extends beyond a first scanning range corresponding to the effective scanning region A detector detects the scanning light beam which moves through a position outside the first scanning range but within the second scanning range, and outputs a detection signal A controller drives the oscillation mirror based on the detection signal and accordingly adjusts the amplitude of the oscillation mirror, and stops driving the oscillation mirror when the detection signal is not outputted from the detector even though a light source is turned on to emit the light beam.
摘要:
An image forming method which generates a video signal corresponding to an image forming command based on a video clock signal, modulates a light beam according to the video signal, and scans the modulated light beam along a main scanning direction by means of an oscillation mirror which resonates based on a drive signal, so as to form a latent image in an effective image region of a latent image carrier, the method includes: synchronizing the drive signal with the video clock signal to synchronize a detection signal with the vide clock signal, the detection signal being output from a detector which detect the light beam scanned in the main scanning direction in a region away from an effective scan region which corresponds to the effective image region; controlling a resonant frequency of the oscillation mirror based on the detection signal so that the resonant frequency of the oscillation mirror almost coincides with the frequency of the drive signal; and adjusting a position, at which the latent image is written over the latent image carrier, is adjusted by adjusting output timing of the video signal based on the detection signal from the detector.
摘要:
A light scanning apparatus makes a light beam scan along a main scanning direction on an effective scanning region which has a predetermined width. The apparatus comprises: a light source which emits the light beam; a deflector which includes an oscillation mirror which oscillates about an oscillatory axis which is orthogonal or approximately orthogonal to the main scanning direction, deflects the light beam emitted from the light source using the oscillation mirror, and makes the light beam scan a second scanning range which contains but extends beyond a first scanning range which corresponds to the effective scanning region; a detector which detects the scanning light beam which moves through a position which is outside the first scanning range but is within the second scanning range, and outputs a signal; and a controller which controls a mirror drive signal fed to the oscillation mirror based on the output signal from the detector and accordingly adjusts the amplitude of the oscillation mirror. In the apparatus above, the controller stops driving the oscillation mirror when confirming based on the output signal that the oscillation mirror is under abnormal control.
摘要:
A light scanning apparatus includes a deflector having an oscillation mirror that oscillates about an axis that is orthogonal to a main scanning direction. A detector detects a scanning light beam deflected by the oscillation mirror and moving in a scanning region. A controller adjusts the amplitude of the oscillation mirror based on a detection signal outputted from the detector, and stops driving the oscillation mirror when the detection signal is not outputted from the detector.
摘要:
A disk drive includes media for recording data, disk heads for recording data and reproducing data on the disks. The heads are supported on arms. A head actuator drives the arms moving the head to a predetermined data recording track on the disk. A spindle motor rotates the disk at a predetermined rotating speed. The spindle motor includes a rotor magnet disposed within a stator coil. The disk head and actuator motor are mounted on a pivot on opposed sides of each other. To control head positioning, first positioning data for positioning the disk heads and second positioning data are provided on each data surface. This data is detected by a data head. Second positioning data may be positioned on tracks not used for containing data. The head position is compensated by the stored second positioning information superimposed on the first positioning data.