摘要:
Drop-on-demand ink jet printer capable of directional control of ink drop ejection and method of assembling the method. The method comprises a print head body having an ink ejection orifice adapted to poise an ink meniscus thereat about a center axis passing through the orifice. A deflector is coupled to the print head body and is adapted to be in communication with the poised meniscus for lowering surface tension of a region of the poised meniscus. The poised meniscus deflects away from the region of lower surface tension and away from the center axis to define a deflected meniscus, whereby an ink drop separated from the deflected meniscus travels at an angle with respect to the center axis, so that the ink drop can strike a receiver at any one of a plurality of predetermined locations on a print line.
摘要:
A printer having mechanically-assisted ink droplet separation and method of using same, for separating an ink meniscus from an ink nozzle orifice while clearing-away particulate matter from about the orifice. In a preferred embodiment of the invention, a heater surrounds an orifice formed by the nozzle, the orifice having an ink meniscus residing therein. As the heater heats the ink meniscus, surface tension of the ink meniscus decreases, thereby causing the ink meniscus to extend outwardly from the orifice to define an extended ink meniscus. A cutter, which is disposed near the orifice, includes a plate member disposed opposite an outside surface of the nozzle so as to define a passage between the outside surface and the plate member. The plate member has an opening aligned with the orifice and in communication with the passage. A gas pressure regulator in communication with the passage supplies pressurized gas into the passage, which gas flows along the passage an through the opening. As the gas flows through the opening, it impinges the extended ink meniscus to separate the extended ink meniscus from the orifice. As the extended ink meniscus separates from the orifice, it forms an ink droplet that travels to a receiver medium, so that an ink spot is placed onto the receiver medium. Moreover, as the gas flows through the opening, the gas clears-away particulate matter from about the orifice.
摘要:
Self-cleaning printer system with reverse fluid flow and rotating roller and method of assembling the printer system. The printer system comprises a print head defining a plurality of ink channels therein, each ink channel terminating in an ink ejection orifice. The print head also has a surface thereon surrounding all the orifices. Contaminant may reside on the surface and also may completely or partially obstruct the orifice. Therefore, a cleaning assembly is disposed relative to the surface and/or orifice for directing a flow of fluid along the surface and/or across the orifice to clean the contaminant from the surface and/or orifice. The cleaning assembly includes a rotatable roller disposed opposite the surface or orifice and defining a gap therebetween. Presence of the rotating roller accelerates the flow of fluid through the gap to induce a hydrodynamic shearing force in the fluid. This shearing force acts against the contaminant to clean the contaminant from the surface and/or orifice. A pump in fluid communication with the gap is also provided for pumping the fluid through the gap. As the surface and/or orifice is cleaned, the contaminant is entrained in the fluid. A filter is provided to separate the contaminant from the fluid. In addition, a valve system in fluid communication with the gap is operable to direct flow of the fluid through the gap in a first direction and then in a second direction opposite the first direction to enhance cleaning effectiveness. Moreover, the print head itself has integral passageways formed therein for conducting the flow of fluid to the surface of the print head.
摘要:
Self-cleaning printer with reverse fluid flow and method of assembling the printer. The printer comprises a print head defining a plurality of ink channels therein, each ink channel terminating in an ink ejection orifice. The print head also has a surface thereon surrounding all the orifices. Contaminant may reside on the surface and also may completely or partially obstruct the orifice. Therefore, a cleaning assembly is disposed relative to the surface and/or orifice for directing a flow of fluid along the surface and/or across the orifice to clean the contaminant from the surface and/or orifice. The cleaning assembly includes an oscillatable septum disposed opposite the surface or orifice for defining a gap therebetween. Presence of the oscillatable septum accelerates the flow of fluid through the gap to induce a hydrodynamic shearing force in the fluid. This shearing force acts against the contaminant to clean the contaminant from the surface and/or orifice. A pump in fluid communication with the gap is also provided for pumping the fluid through the gap. As the surface and/or orifice is cleaned, the contaminant is entrained in the fluid. A filter is provided to separate the contaminant from the fluid.
摘要:
A self-cleaning ink jet printer with oscillating septum and ultrasonics and method of assembling the printer. The printer has a print head defining a plurality of ink channels therein, each ink channel terminating in an ink ejection orifice. The print head also has a surface thereon surrounding all the orifices. Contaminant may reside on the surface and also may completely or partially obstruct the orifice. Therefore, a cleaning assembly is disposed relative to the surface and/or orifice for directing a flow of fluid along the surface and/or across the orifice to clean the contaminant from the surface and/or orifice. The cleaning assembly includes an oscillatable septum disposed opposite the surface or orifice for defining a gap therebetween. Presence of the septum accelerates the flow of fluid through the gap to induce a hydrodynamic shearing force in the fluid. This shearing force acts against the contaminant to “sweep” the contaminant from the surface and/or orifice. Also included is an ultrasonic transducer in communication with the fluid for generating a plurality of pressure waves in the fluid for dislodging the contaminant. A pump in fluid communication with the gap is also provided for pumping the fluid through the gap. As the surface and/or orifice is cleaned, the contaminant is entrained in the fluid. A filter is provided to separate the contaminant from the fluid.
摘要:
Self-cleaning printer system with reverse fluid flow and method of assembling the printer system. The printer system comprises a print head defining a plurality of ink channels therein, each ink channel terminating in an ink ejection orifice. The print head also has a surface thereon surrounding all the orifices. Contaminant may reside on the surface and also may completely or partially obstruct the orifice. Therefore, a cleaning assembly is disposed relative to the surface and/or orifice for directing a flow of fluid along the surface and/or across the orifice to clean the contaminant from the surface and/or orifice. The cleaning assembly includes a septum disposed opposite the surface or orifice for defining a gap therebetween. Presence of the septum accelerates the flow of fluid through the gap to induce a hydrodynamic shearing force in the fluid. This shearing force acts against the contaminant to clean the contaminant from the surface and/or orifice. A pump in fluid communication with the gap is also provided for pumping the fluid through the gap. As the surface and/or orifice is cleaned, the contaminant is entrained in the fluid. A filter is provided to separate the contaminant from the fluid. In addition, a valve system in fluid communication with the gap is operable to direct flow of the fluid through the gap in a first direction and then in a second direction opposite the first direction to enhance cleaning effectiveness. Moreover, the print head itself has integral passageways formed therein for conducting the flow of fluid to the surface of the print head.
摘要:
A printer having an interference-free receiver sheet feed path and method of assembling the printer. The printer, which is a thermal dye printer, comprises a print head for forming an image on a movable receiver sheet belonging to a stack of receiver sheets having a front edge portion. The stack of receiver sheets reside in a receiver sheet supply tray. A roller feeds the top-most receiver sheet along a receiver sheet feed path, leading edge first, from the supply tray and to the print head for printing by means of thermal activation of a first one of a plurality of dye donor patches belonging to a dye donor ribbon. After the first dye donor patch prints, the receiver sheet returns, trailing edge first, to the supply tray before printing by the next dye donor patch. A canopy that is connected to the supply tray is biased by a biasing member to cover the front edge portion of the stack of sheets while the receiver sheet returns to the supply tray, so that the trailing edge of the receiver sheet being printed does not abut the front edge portion of the stack of receiver sheets and crumple to possibly “jam” the printer by obstructing the feed path. An actuator is coupled to the canopy for actuating the canopy to uncover the front edge portion of the stack of receiver sheets while the receiver sheet is fed from the supply tray.