Mutual information regularized Bayesian framework for multiple image restoration
    1.
    发明申请
    Mutual information regularized Bayesian framework for multiple image restoration 失效
    相互信息正则化贝叶斯框架用于多个图像恢复

    公开(公告)号:US20060087703A1

    公开(公告)日:2006-04-27

    申请号:US11252334

    申请日:2005-10-17

    IPC分类号: H04N1/38

    摘要: A method for multiple image restoration includes receiving a plurality of images corrupted by noise, and initializing a reduced noise estimate of the plurality of images. The method further includes estimating a probability of distributions of noise around each pixel and the probability of the signal, estimating mutual information between noise on the plurality of images based on the probabilities of distributions of noise around each pixel and the joint distribution of noise, and updating each pixel within a search range to determine a restored image by reducing the mutual information between the noise on the plurality of images.

    摘要翻译: 一种用于多重图像恢复的方法包括:接收由噪声破坏的多个图像,以及初始化所述多个图像的降低的噪声估计。 该方法还包括估计每个像素周围的噪声分布概率和信号的概率,基于每个像素周围的噪声分布的概率和噪声的联合分布来估计多个图像上的噪声之间的相互信息;以及 更新搜索范围内的每个像素以通过减少多个图像上的噪声之间的相互信息来确定恢复的图像。

    Image compounding based on independent noise constraint

    公开(公告)号:US20060078181A1

    公开(公告)日:2006-04-13

    申请号:US11229106

    申请日:2005-09-16

    IPC分类号: G06K9/00

    摘要: A method and system for improving image quality by compounding a plurality of images to mitigate the effects of image noise. The method utilizes the independency between noise components for multiple image compounding. An effective measurement is designed to regularize the independency between noise in a traditional generative model based filtering framework, thereby enabling a more robust algorithmic solution to inaccurate signal/noise modeling. The method generally comprises selecting a plurality of images, calculating the residual error on each image; calculating the noise likelihood of each image, calculating the signal likelihood of the image, performing an independence analysis to regularize an independence constraint between the residual errors of the images, and summing the signal likelihood, noise likelihood and pairwise independency to approximate the joint independency between the residual errors.

    Gradient-based image restoration and enhancement

    公开(公告)号:US20060072844A1

    公开(公告)日:2006-04-06

    申请号:US11231435

    申请日:2005-09-20

    IPC分类号: G06K9/40

    摘要: A gradient-based image enhancement and restoration method and system which applies an orientation-isotropy adaptive filter to the gradients of high structured regions, and directly suppresses the gradients in the noise or texture regions. A new gradient field is obtained from which image reconstruction can progress using least mean squares. The method generally comprises: inputting image data; calculating image gradients; defining the gradients as having large or small coherence; filtering the large coherence gradients for edge enhancement; suppressing the small coherence gradients for noise reduction; assembling an enhanced gradient field from the filtered large coherence and suppressed small coherence gradients; and optimizing the assembled gradient field into a restored image.

    Mutual information regularized Bayesian framework for multiple image restoration
    4.
    发明授权
    Mutual information regularized Bayesian framework for multiple image restoration 失效
    相互信息正则化贝叶斯框架用于多个图像恢复

    公开(公告)号:US07684643B2

    公开(公告)日:2010-03-23

    申请号:US11252334

    申请日:2005-10-17

    摘要: A method for multiple image restoration includes receiving a plurality of images corrupted by noise, and initializing a reduced noise estimate of the plurality of images. The method further includes estimating a probability of distributions of noise around each pixel and the probability of the signal, estimating mutual information between noise on the plurality of images based on the probabilities of distributions of noise around each pixel and the joint distribution of noise, and updating each pixel within a search range to determine a restored image by reducing the mutual information between the noise on the plurality of images.

    摘要翻译: 一种用于多重图像恢复的方法包括:接收由噪声破坏的多个图像,以及初始化所述多个图像的降低的噪声估计。 该方法还包括估计每个像素周围的噪声分布概率和信号的概率,基于每个像素周围的噪声分布的概率和噪声的联合分布来估计多个图像上的噪声之间的相互信息;以及 更新搜索范围内的每个像素以通过减少多个图像上的噪声之间的相互信息来确定恢复的图像。

    Gradient-based image restoration and enhancement
    5.
    发明授权
    Gradient-based image restoration and enhancement 失效
    基于梯度的图像恢复和增强

    公开(公告)号:US07529422B2

    公开(公告)日:2009-05-05

    申请号:US11231435

    申请日:2005-09-20

    IPC分类号: G06K9/40

    摘要: A gradient-based image enhancement and restoration method and system which applies an orientation-isotropy adaptive filter to the gradients of high structured regions, and directly suppresses the gradients in the noise or texture regions. A new gradient field is obtained from which image reconstruction can progress using least mean squares. The method generally comprises: inputting image data; calculating image gradients; defining the gradients as having large or small coherence; filtering the large coherence gradients for edge enhancement; suppressing the small coherence gradients for noise reduction; assembling an enhanced gradient field from the filtered large coherence and suppressed small coherence gradients; and optimizing the assembled gradient field into a restored image.

    摘要翻译: 一种基于梯度的图像增强和恢复方法和系统,其对高结构区域的梯度应用方向 - 各向同性自适应滤波器,并且直接抑制噪声或纹理区域中的梯度。 获得一个新的梯度场,从该图像重建可以使用最小均方进行。 该方法通常包括:输入图像数据; 计算图像梯度; 将梯度定义为具有大或小的一致性; 过滤大的相干梯度进行边缘增强; 抑制噪声降低的小相干梯度; 从滤波后的大相干和抑制小相干梯度组装增强梯度场; 并将组装的梯度场优化为恢复的图像。

    Image compounding based on independent noise constraint
    6.
    发明授权
    Image compounding based on independent noise constraint 失效
    基于独立噪声约束的图像复合

    公开(公告)号:US07508968B2

    公开(公告)日:2009-03-24

    申请号:US11229106

    申请日:2005-09-16

    IPC分类号: G06K9/00 G06K9/40 G06K9/36

    摘要: A method and system for improving image quality by compounding a plurality of images to mitigate the effects of image noise. The method utilizes the independency between noise components for multiple image compounding. An effective measurement is designed to regularize the independency between noise in a traditional generative model based filtering framework, thereby enabling a more robust algorithmic solution to inaccurate signal/noise modeling. The method generally comprises selecting a plurality of images, calculating the residual error on each image; calculating the noise likelihood of each image, calculating the signal likelihood of the image, performing an independence analysis to regularize an independence constraint between the residual errors of the images, and summing the signal likelihood, noise likelihood and pairwise independency to approximate the joint independency between the residual errors.

    摘要翻译: 一种用于通过复合多个图像来减轻图像噪声的影响来提高图像质量的方法和系统。 该方法利用多重图像复合的噪声分量之间的独立性。 设计了一种有效的测量方法来规范传统的基于生成模型的滤波框架中的噪声之间的独立性,从而实现了更为鲁棒的算法解决方案,使信号/噪声建模不准确。 该方法通常包括选择多个图像,计算每个图像上的残差; 计算每个图像的噪声可能性,计算图像的信号可能性,执行独立性分析以使图像的残差误差之间的独立性约束正规化,并且将信号似然性,噪声似然性和成对独立性相加以近似于 剩余错误。

    System and Method For Image Reconstruction
    7.
    发明申请
    System and Method For Image Reconstruction 有权
    图像重构系统与方法

    公开(公告)号:US20070217566A1

    公开(公告)日:2007-09-20

    申请号:US11682013

    申请日:2007-03-05

    摘要: A system and method for image reconstruction is disclosed. The method divides iterative image reconstruction into two stages, in the image and Radon space, respectively. In the first stage, filtered back projection and adaptive filtering in the image space are combined to generate a refined reconstructed image of a sinogram residue. This reconstructed image represents an update direction in the image space. In the second stage, the update direction is transformed to the Radon space, and a step size is determined to minimize a difference between the sinogram residue and a Radon transform of the refined reconstructed image of the sinogram residue in the Radon space. These stages are repeated iteratively until the solution converges.

    摘要翻译: 公开了一种用于图像重建的系统和方法。 该方法分别在图像和氡空间中将迭代图像重建分为两个阶段。 在第一阶段,滤波反投影和图像空间中的自适应滤波被组合以产生正弦图残差的精细重建图像。 该重建图像表示图像空间中的更新方向。 在第二阶段中,将更新方向转换为Radon空间,并且确定步长以最小化Radon空间中的正弦图残差的精细重建图像的正弦图残差和Radon变换之间的差异。 迭代重复这些阶段,直到解得到收敛。

    System and Method For Feature Detection In Image Sequences
    8.
    发明申请
    System and Method For Feature Detection In Image Sequences 审中-公开
    图像序列中特征检测的系统和方法

    公开(公告)号:US20070147682A1

    公开(公告)日:2007-06-28

    申请号:US11566353

    申请日:2006-12-04

    IPC分类号: G06K9/46

    摘要: A method for processing image data includes inputting image data, determining a plurality of quadrature filter pairs based on filter parameter values to detect features of interest in the image data, applying the quadrature filter pairs to the image data to obtain a set of filter responses, and processing the filter responses to obtain the features of interest in the image data.

    摘要翻译: 一种处理图像数据的方法包括输入图像数据,基于滤波器参数值确定多个正交滤波器对,以检测图像数据中感兴趣的特征,将正交滤波器对应用于图像数据以获得一组滤波器响应, 并处理滤波器响应以获得图像数据中感兴趣的特征。

    SYSTEM AND METHOD FOR EFFICIENT FEATURE DIMENSIONALITY AND ORIENTATION ESTIMATION
    10.
    发明申请
    SYSTEM AND METHOD FOR EFFICIENT FEATURE DIMENSIONALITY AND ORIENTATION ESTIMATION 审中-公开
    用于有效特征尺度和方位估计的系统和方法

    公开(公告)号:US20070189607A1

    公开(公告)日:2007-08-16

    申请号:US11548714

    申请日:2006-10-12

    IPC分类号: G06K9/48

    CPC分类号: G06K9/46 G06T7/73

    摘要: A method of automatically detecting features in an image includes: designing a gradient detection filter and a line detection filter; applying the gradient detection filter and line detection filter to detect structures in an image; and estimating feature dimensionality and orientation of the detected structures in the image. The computation cost of gradient detection and line detection when applied on an image is a constant number of operations independent of the size of the gradient and line detection filters.

    摘要翻译: 一种自动检测图像中的特征的方法包括:设计梯度检测滤波器和线路检测滤波器; 应用梯度检测滤波器和线检测滤波器来检测图像中的结构; 并且估计图像中检测到的结构的特征维度和取向。 应用于图像时梯度检测和线检测的计算成本是与梯度和线检测滤波器的大小无关的常数运算。