摘要:
A method of speech recognition, in accordance with the present invention includes the steps of grouping acoustics to form classes based on acoustic features, clustering training speakers by the classes to provide class-specific cluster systems, selecting from the cluster systems, a subset of cluster systems closest to adaptation data from a test speaker, transforming the subset of cluster systems to bring the subset of cluster systems closer to the test speaker based on the adaptation data to form adapted cluster systems and combining the adapted cluster systems to create a speaker adapted system for decoding speech from the test speaker. System and methods for building speech recognition systems as well as adapting speaker systems for class-specific speaker clusters are included.
摘要:
A method and apparatus for estimating the probability of phones, a-posteriori, in the context of not only the acoustic feature at that time, but also the acoustic features in the vicinity of the current time, and its use in cutting down the search-space in a speech recognition system. The method constructs and uses a decision tree, with the predictors of the decision tree being the vector-quantized acoustic feature vectors at the current time, and in the vicinity of the current time. The process starts with an enumeration of all (predictor, class) events in the training data at the root node, and successively partitions the data at a node according to the most informative split at that node. An iterative algorithm is used to design the binary partitioning. After the construction of the tree is completed, the probability distribution of the predicted class is stored at all of its terminal leaves. The decision tree is used during the decoding process by tracing a path down to one of its leaves, based on the answers to binary questions about the vector-quantized acoustic feature vector at the current time and its vicinity.
摘要:
A system and method are provided which partition the feature space of a classifier by using hyperplanes to construct a binary decision tree or hierarchical data structure for obtaining the class probabilities for a particular feature vector. One objective in the construction of the decision tree is to minimize the average entropy of the empirical class distributions at each successive node or subset, such that the average entropy of the class distributions at the terminal nodes is minimized. First, a linear discriminant vector is computed that maximally separates the classes at any particular node. A threshold is then chosen that can be applied on the value of the projection onto the hyperplane such that all feature vectors that have a projection onto the hyperplane that is less than the threshold are assigned to a child node (say, left child node) and the feature vectors that have a projection greater than or equal to the threshold are assigned to a right child node. The above two steps are then repeated for each child node until the data at a node falls below a predetermined threshold and the node is classified as a terminal node (leaf of the decision tree). After all non-terminal nodes have been processed, the final step is to store a class distribution associated with each terminal node. The class probabilities for a particular feature vector can then be obtained by traversing the decision tree in a top-down fashion until a terminal node is identified which corresponds to the particular feature vector. The information provided by the decision tree is that, in computing the class probabilities for the particular feature vector, only the small number of classes associated with that particular terminal node need be considered. Alternatively, the required class probabilities can be obtained simply by taking the stored distribution of the terminal node associated with the particular feature vector.
摘要:
In connection with speech recognition, the design of a linear transformation θεp×n, of rank p×n, which projects the features of a classifier xεn onto y=θxεp such as to achieve minimum Bayes error (or probability of misclassification). Two avenues are explored: the first is to maximize the θ-average divergence between the class densities and the second is to minimize the union Bhattacharyya bound in the range of θ. While both approaches yield similar performance in practice, they outperform standard linear discriminant analysis features and show a 10% relative improvement in the word error rate over known cepstral features on a large vocabulary telephony speech recognition task.
摘要翻译:结合语音识别,线性变换的设计θepsilon pxn,其排列为pxn,其投影分类器的特征xepsilon n to y = thetaxepsilon p以达到最小贝叶斯误差(或错误分类的概率)。 探索了两个途径:第一个是最大化类密度之间的θ平均差异,第二个是最小化在θ范围内绑定的Bhattacharyya。 虽然这两种方法在实践中产生类似的性能,但是它们优于标准线性判别分析特征,并且在大量词汇电话语音识别任务上显示出已知倒谱特征的误码率的10%相对提高。
摘要:
A method of identifying mismatches between acoustic data and a corresponding transcription, the transcription being expressed in terms of basic units, comprises the steps of: aligning the acoustic data with the corresponding transcription; computing a probability score for each instance of a basic unit in the acoustic data with respect to the transcription; generating a distribution for each basic unit; tagging, as mismatches, instances of a basic unit corresponding to a particular range of scores in the distribution for each basic unit based on a threshold value; and correcting the mismatches.
摘要:
A system and method for adaptation of a speaker independent speech recognition system for use by a particular user. The system and method gather acoustic characterization data from a test speaker and compare the data with acoustic characterization data generated for a plurality of training speakers. A match score is computed between the test speaker's acoustic characterization for a particular acoustic subspace and each training speaker's acoustic characterization for the same acoustic subspace. The training speakers are ranked for the subspace according to their scores and a new acoustic model is generated for the test speaker based upon the test speaker's acoustic characterization data and the acoustic characterization data of the closest matching training speakers. The process is repeated for each acoustic subspace.
摘要:
Methods and apparatus are provided for processing an information signal containing content presented in accordance with at least one modality. In one aspect of the present invention, a method of processing an information signal containing content presented in accordance with at least one modality, comprises the steps of: (i) obtaining the information signal; (ii) performing content detection on the information signal to detect whether the information signal includes particular content presented in accordance with the at least one modality; and (iii) generating a control signal, when the particular content is detected, for use in controlling a rendering property of the particular content and/or implementation of a specific action relating to the particular content. Various illustrative embodiments in the context of speech signal processing for use in voicemail and/or cellular phone applications are provided, as well as illustrative embodiments associated with the processing of multi-modal or multimedia information signals. Also, the present invention provides for storing selectively marked information, even in the absence of content detection, such that the information may be rendered and/or used at a later time. The invention also extends to processing of text-based and markup language-based signals, e.g., XML documents.
摘要:
A method of adapting a speech recognition system to one or more acoustic conditions comprises the steps of: (i) computing cumulative distribution functions based on dimensions of speech vectors associated with training speech data provided to the speech recognition system; (ii) computing cumulative distribution functions based on dimensions of speech vectors associated with test speech data provided to the speech recognition system; (iii) computing a nonlinear transformation mapping based on the cumulative distribution functions associated with the training speech data and the cumulative distribution functions associated with the test speech data; and (iv) applying the nonlinear transformation mapping to speech vectors associated with the test speech data prior to recognition, wherein the speech vectors transformed in accordance with the nonlinear transformation mapping are substantially similar to speech vectors associated with the training speech data.
摘要:
A method of forming an augmented textual training corpus with compound words for use with an associated with a speech recognition system includes computing a measure for a consecutive word pair in the training corpus. The measure is then compared to a threshold value. The consecutive word pair is replaced in the training corpus with a corresponding compound word depending on the result of the comparison between the measure and the threshold value. One or more measures may be employed. A first measure is an average of a direct bigram probability value and a reverse bigram probability value. A second measure is based on mutual information between the words in the pair. A third measure is based on a comparison of the number of times a co-articulated baseform for the pair is preferred over a concatenation of non-co-articulated individual baseforms of the words forming the pair. A fourth measure is based on a difference between an average phone recognition score for a particular compound word and a sum of respective average phone recognition scores of the words of the pair.
摘要:
A method for recognizing speech includes the steps of providing a generic model having a baseform representation of a vocabulary of words, identifying a subset of words relating to an application, constructing a task specific model for the subset of words, constructing a composite model by combining the generic and task specific models and modifying the baseform representation of the subset of words such that the subset of words are recognized by the task specific model. A system for recognizing speech includes a composite model having a generic model having a generic baseform representation of a vocabulary of words and a task specific model for recognizing a subset of words relating to an application wherein the subset of words are recognized using a modified baseform representation. A recognizer compares words input thereto with the generic model for words other than the subset of words and with the task specific model for the subset of words.