摘要:
Cholesterol in low density lipoproteins can be measured specifically and precisely by optically measuring a reaction product of a living sample with cholesterol oxidase or cholesterol dehydrogenase in the presence of an amphoteric surfactant. In addition to the above processes for measurement, the present invention provides reagent compositions and kits for measuring cholesterol in low density lipoprotein.
摘要:
The amount of cholesterol in low density lipoproteins in a sample can be measured by contacting the sample with one or more reagent solutions to carry out the reaction in the presence of a polyanion and an amphoteric surfactant, followed by optical measurement of the reaction product.
摘要:
The present invention is to provide a method for measuring an amount of cholesterol in low density lipoproteins (LDL-cholesterol) in a sample specifically at high accuracy and a reagent used in this method, and the present invention can attain such effect that direct measuring an amount of LDL-cholesterol by widely used automatic analyzers can be conducted by using the invention, which has not been possible after known methods.
摘要:
A living body component in a sample derived from a living body can be rapidly and accurately measured by reacting the sample with a reagent comprising a combined product of an affinity substance and a polypeptide having at least three acid residues derived from a strong acid, separating the resulting complex by a method applying negative change such as using an anion-exchanger, and determining the amount of the analyte to be measured, on the basis of the amount of the complex or free combined product.
摘要:
A living body component in a sample derived from a living body can be rapidly and accurately measured by reacting the sample with a reagent comprising a combined product of an affinity substance and a polypeptide having at least three acid residues derived from a strong acid, separating the resulting complex by a method applying negative change such as using an anion-exchanger, and determining the amount of the analyte to be measured, on the basis of the amount of the complex or free combined product.