摘要:
The semiconductor radiological detector 1 minimizes a dead space resulting from the draw-out of a signal line from an electrode and which allows a number of semiconductor devices to be densely arranged to improve sensitivity and spatial resolution. The semiconductor radiological detector 1 comprises a semiconductor device 2, an anode 3 attached to one surface of the semiconductor device 2, and a cathode 4 attached to the other surface of the semiconductor device 2. A signal line 5 is provided on the anode 3; the signal line 5 extends straight from the anode 3 and is connected to an X axis wire 12. Another signal line 13 is provided on the cathode 4; the signal line 13 extends straight from the cathode 4 and is connected to a Y axis wire 14.
摘要:
A γ-ray signal processing section 60′ determines a detection time of a γ ray based on a α-ray detection signal outputted from a semiconductor radiation detector for detecting the γ ray, and determines the energy of the γ ray. Then, a time correction circuit 70 obtains, based on the energy of the γ ray, a detection value of the detection time that corresponds to the energy of the γ ray from a time correction table indicating the relationship between the energy of the γ ray and the correction value of the detection time of the γ ray, and corrects the detection time according to the obtained correction value of the detection time. Coincidence counting is performed on the γ ray in a coincidence counting circuit 80 based on the corrected detection time.
摘要:
The semiconductor radiological detector 1 minimizes a dead space resulting from the draw-out of a signal line from an electrode and which allows a number of semiconductor devices to be densely arranged to improve sensitivity and spatial resolution. The semiconductor radiological detector 1 comprises a semiconductor device 2, an anode 3 attached to one surface of the semiconductor device 2, and a cathode 4 attached to the other surface of the semiconductor device 2. A signal line 5 is provided on the anode 3; the signal line 5 extends straight from the anode 3 and is connected to an X axis wire 12. Another signal line 13 is provided on the cathode 4; the signal line 13 extends straight from the cathode 4 and is connected to a Y axis wire 14.
摘要:
The semiconductor radiological detector 1 minimizes a dead space resulting from the draw-out of a signal line from an electrode and which allows a number of semiconductor devices to be densely arranged to improve sensitivity and spatial resolution. The semiconductor radiological detector 1 comprises a semiconductor device 2, an anode 3 attached to one surface of the semiconductor device 2, and a cathode 4 attached to the other surface of the semiconductor device 2. A signal line 5 is provided on the anode 3; the signal line 5 extends straight from the anode 3 and is connected to an X axis wire 12. Another signal line 13 is provided on the cathode 4; the signal line 13 extends straight from the cathode 4 and is connected to a Y axis wire 14.
摘要:
A radiation imaging apparatus with high spatial resolution including semiconductor radiation detectors arranged on a wiring board capable of detecting γ-rays by separating their positions in the direction of incidence of γ-rays is provided. A semiconductor radiation detector is constructed by including five semiconductor devices made up of, for example, CdTe rectangular parallelepiped plates, a cathode electrode on one side of the semiconductor device, an anode electrode on the other side of the semiconductor device and an insulator for coating five semiconductor detection devices from the outside. The semiconductor radiation detector is mounted on a wiring board using an anode pin and a cathode pin.
摘要:
A radiation imaging apparatus with high spatial resolution including semiconductor radiation detectors arranged on a wiring board capable of detecting γ-rays by separating their positions in the direction of incidence of γ-rays is provided. A semiconductor radiation detector is constructed by including five semiconductor devices made up of, for example, CdTe rectangular parallelepiped plates, a cathode electrode on one side of the semiconductor device, an anode electrode on the other side of the semiconductor device and an insulator for coating five semiconductor detection devices from the outside. The semiconductor radiation detector is mounted on a wiring board using an anode pin and a cathode pin.
摘要:
A γ-ray signal processing section 60′ determines a detection time of a γ ray based on a γ-ray detection signal outputted from a semiconductor radiation detector for detecting the γ ray, and determines the energy of the γ ray. Then, a time correction circuit 70 obtains, based on the energy of the γ ray, a detection value of the detection time that corresponds to the energy of the γ ray from a time correction table indicating the relationship between the energy of the γ ray and the correction value of the detection time of the γ ray, and corrects the detection time according to the obtained correction value of the detection time. Coincidence counting is performed on the γ ray in a coincidence counting circuit 80 based on the corrected detection time.
摘要:
A radiological imaging apparatus capable of improving an arrangement density of semiconductor radiation detectors and detector units thereof, each detector unit consisting of a plurality of combined substrates having a detector substrate which includes semiconductor radiation detectors and a signal processing substrate which includes integrated circuits, housed in a housing. The detector substrate protrudes outward from an opening of the housing. A plurality of detector units are attached to a ring-shaped unit support section in a circumferential direction thereof. More specifically, the detector substrate protrudes inward from the unit support section and the housing is attached to the unit support section.
摘要:
The radiological imaging system which can improve an energy resolution and perform a diagnosis with high accuracy includes a bed for carrying an examinee H, first and second imaging apparatuses and disposed along the longitudinal direction of the bed. The first imaging apparatus has a plurality of semiconductor radiation detectors for detecting γ-rays emitted from the examinee H, arranged around the bed, the second imaging apparatus has an X-ray source for emitting X-rays to the examinee H and a radiation detector for detecting X-rays which have been emitted from the X-ray source and passed through the examinee H, and the bed is shared by the first imaging apparatus and the second imaging apparatus.
摘要:
The radiological imaging system which can improve an energy resolution and perform a diagnosis with high accuracy includes a bed for carrying an examinee H, first and second imaging apparatuses and disposed along the longitudinal direction of the bed. The first imaging apparatus has a plurality of semiconductor radiation detectors for detecting γ-rays emitted from the examinee H, arranged around the bed, the second imaging apparatus has an X-ray source for emitting X-rays to the examinee H and a radiation detector for detecting X-rays which have been emitted from the X-ray source and passed through the examinee H, and the bed is shared by the first imaging apparatus and the second imaging apparatus.