HORIZONTAL-DEFLECTION PREVENTION MECHANISM FOR HIGH VOLTAGE DIRECT CURRENT RELAY

    公开(公告)号:US20180025874A1

    公开(公告)日:2018-01-25

    申请号:US15540783

    申请日:2016-07-07

    IPC分类号: H01H50/58 H01H50/36

    摘要: The present invention discloses a horizontal-deflection prevention mechanism for an HVDC relay, comprising a moving contact assembly which comprises a moving reed and moving contacts arranged at left and right ends of the moving reed; an upper section of a pushrod is located above a yoke plate and fixed with the moving reed; a positioning plate is provided on the yoke plate; and a left return spring is connected between a left end of the moving reed and the positioning plate, and a right return spring is connected between a right end of the moving reed and the positioning plate. In the present invention, by the arrangement of a left return spring and a right return spring at the left and right ends of the moving reed at which moving contacts are provided, on one hand, a breaking force can be provided, which allows the moving contacts to quickly separate from the stationary contacts when the moving contacts and the stationary contacts are to be separated from each other, so that the relay makes a response quickly. On the other hand, the left return spring and the right return spring always provide an acting force which prevents the moving reed from rotating horizontally, so as to ensure that the moving contacts and the stationary contacts can come into contact precisely and to thus prevent the occurrence of faults due to the contact between the moving reed and other components.

    MOVING IRON CORE GUIDE MECHANISM FOR HIGH VOLTAGE DIRECT CURRENT RELAY

    公开(公告)号:US20180025873A1

    公开(公告)日:2018-01-25

    申请号:US15540920

    申请日:2016-07-07

    IPC分类号: H01H50/18 H01H50/36 H01H50/64

    摘要: The present invention discloses a moving iron core guide mechanism for an HVDC relay, comprising a pushrod, an upper section of the pushrod being located above a yoke plate and fixed with a moving contact assembly, a middle section and a lower section of the pushrod passing through the yoke plate downward, the middle section of the pushrod being fixed with a moving iron core; the moving iron core is located inside a magnetic conductive cylinder of a U-shaped yoke; a lower bushing is fixed inside the magnetic conductive cylinder, and the lower bushing is located below the moving iron core; a lower guide hole running from top to bottom is formed on the lower bushing; and the lower section of the pushrod is always fitted inside the lower guide hole of the lower bushing, and the pushrod is in smooth contact with an inner wall of the lower guide hole. In the present invention, the up-and-down motion of the moving iron core and the pushrod can become easier while the turns of the coil can be maintained; and the production cost can be reduced when the moving iron core and the pushrod are in normal use.

    SEALED HIGH VOLTAGE DIRECT CURRENT RELAY
    3.
    发明申请

    公开(公告)号:US20180025872A1

    公开(公告)日:2018-01-25

    申请号:US15539612

    申请日:2016-07-07

    IPC分类号: H01H50/02 H01H50/36

    摘要: The present invention discloses a sealed HVDC relay, comprising an insulating hood and a yoke plate which is extended upward to form a cylindrical fixing portion; the insulating hood has an overturned cup structure; a chamber for accommodating moving contacts and stationary contacts is formed by the yoke plate and the insulating hood together; a lower end of the insulating hood and the fixing portion of the yoke plate are fitted with each other by threads; and the portion fitted by threads between the lower end of the insulating hood and the fixing portion is sealed by adhesive pouring. In the present invention, with the insulating hood made of ceramics, the stiffness of the relay structure of the present invention is promised. The absence of a brazing process makes the relay of the present invention short in manufacturing period and low in cost. With regard to the present invention, the sealing performance of the relay is promised by adhesive pouring, and a service voltage of the relay can be increased. In this way, the voltage of the relay of the present invention can reach 1000 V, thus improving the application performance of the present invention.