BIO-OIL LIGHT FRACTION-BASED BREAD-SHAPED POROUS ACTIVATED CARBON, METHOD FOR PREPARING THE SAME AND USE THEREOF

    公开(公告)号:US20220259049A1

    公开(公告)日:2022-08-18

    申请号:US17739191

    申请日:2022-05-09

    Abstract: A bio-oil light fraction-based bread-shaped porous activated carbon, a method for preparing the same and use thereof are provided. A light fraction prepared by fast pyrolysis of a biomass coupled with molecular distillation is selected as a precursor; an activator is directly mixed with the light fraction and stirred to obtain a homogeneous liquid; then, the homogeneous liquid is subjected to one-step carbonization and activation at a two-stage temperature in an inert atmosphere; after the activation, the obtained solid was washed and filtered, the activator reaction products and impurities are removed, and then dried to obtain the activated carbon used as an electrode carbon material of a supercapacitor. The method fully utilizes the rich micromolecule compounds such as water, acids, ketones, aldehydes, monophenols and the like in the obtained light fraction, and the micromolecule compounds and water can interact with the activator.

    METHOD FOR PREPARING HYDROGEN-RICH SYNTHESIS GAS BY DEGRADING POLYOLEFIN WASTE PLASTICS AT LOW TEMPERATURE

    公开(公告)号:US20230084526A1

    公开(公告)日:2023-03-16

    申请号:US17987894

    申请日:2022-11-16

    Abstract: A method for preparing hydrogen-rich synthesis gas by degrading waste polyolefin plastics at a low temperature includes the following steps: weighing 1 part by weight of polyolefin waste plastics and 3 parts-80 parts by weight of hydrogen peroxide containing 0.25%-6% of H2O2; feeding the polyolefin waste plastics and the hydrogen peroxide into a hydrothermal reactor, and carrying out the oxidation pretreatment reaction at a reaction temperature of 150° C.-230° C. under a reaction pressure of 0.5 MPa-2 MPa for 30 minutes-90 minutes, and obtaining an aqueous-phase product and a gas-phase product after the reaction is finished; filling another hydrothermal reactor with a mesoporous carbon supported metal-based catalyst, and then introducing the aqueous-phase product into the hydrothermal reactor for a reforming reaction to obtain a hydrogen-rich synthesis gas product. In the whole process, the H2 yield is close to 11 mol/kg plastics, and the H2 concentration in the hydrogen-rich synthesis gas is close to 55%.

Patent Agency Ranking