Abstract:
An electric power system for transportation comprises an electric generator started up by an ignition signal, an electricity storage element and a power supply connected to the electric generator, the electricity storage element and the load. The power supply comprises a standby power supply unit, an operating power supply unit and a control unit connected to the electric generator. The control unit is provided with a first state allowing the standby power supply unit and the operating power supply unit to stop operation when the ignition signal is not detected, and a second state starting up the standby power supply unit so as to allow the standby power supply unit to supply electric power to the load and induce the load to emit an on-off signal to the operating power supply unit when the ignition signal is detected.
Abstract:
A start-up architecture of a redundant power supply system is provided. The redundant power supply system is electrically connected to a load, and includes N+M power supplies, where N≧1 and M≧1. The start-up architecture includes a power integration backboard electrically connected to the power supplies, and a mode switching member. The power integration backboard includes an activation circuit, and has a synchronous booting mode in which the power supplies are simultaneously activated and a sequential booting mode in which the power supplies are sequentially activated. The mode switching member is electrically connected to the activation circuit, and receives a manual switching of a user to output a synchronous booting signal that controls the power integration backboard to enter the synchronous booting mode and to output a sequential booting signal that controls the power integration backboard to enter the sequential booting mode.