Three-dimensional (3D) depth imaging systems and methods for dynamic container auto-configuration

    公开(公告)号:US11010915B2

    公开(公告)日:2021-05-18

    申请号:US16509228

    申请日:2019-07-11

    摘要: Three-dimensional (3D) depth imaging systems and methods are disclosed for dynamic container auto-configuration. A 3D-depth camera captures 3D image data of a shipping container located in a predefined search space during a shipping container loading session. An auto-configuration application determines a representative container point cloud and (a) loads an initial pre-configuration file that defines a digital bounding box having dimensions representative of the predefined search space and an initial front board area; (b) applies the digital bounding box to the container point cloud to remove front board interference data from the container point cloud based on the initial front board area; (c) generates a refined front board area based on the shipping container type; (d) generates an adjusted digital bounding box based on the refined front board area; and (e) generates an auto-configuration result comprising the adjusted digital bounding box containing at least a portion of the container point cloud.

    Systems and methods for automatic camera installation guide (CIG)

    公开(公告)号:US11419101B2

    公开(公告)日:2022-08-16

    申请号:US17080436

    申请日:2020-10-26

    摘要: Three-dimensional (3D) depth imaging systems and methods are disclosed for assessing an orientation with respect to a container. A 3D-depth camera captures 3D image data of a shipping container. A container feature assessment application determines a representative container point cloud and (a) converts the 3D image data into 2D depth image data; (b) compares the 2D depth image data to one or more template image data; (c) performs segmentation to extract 3D point cloud features; (d) determines exterior features of the shipping container and assesses the exterior features using an exterior features metric; (e) determines interior features of the shipping container and assesses the interior features using an interior features metric; and (f) generates an orientation adjustment instruction for indicating to an operator to orient the 3D-depth camera in a second direction for use during a shipping container loading session, wherein the second direction is different than the first direction.

    Systems and methods for automatic camera installation guidance (CIG)

    公开(公告)号:US10820307B2

    公开(公告)日:2020-10-27

    申请号:US16670446

    申请日:2019-10-31

    摘要: Three-dimensional (3D) depth imaging systems and methods are disclosed for assessing an orientation with respect to a container. A 3D-depth camera captures 3D image data of a shipping container. A container feature assessment application determines a representative container point cloud and (a) converts the 3D image data into 2D depth image data; (b) compares the 2D depth image data to one or more template image data; (c) performs segmentation to extract 3D point cloud features; (d) determines exterior features of the shipping container and assesses the exterior features using an exterior features metric; (e) determines interior features of the shipping container and assesses the interior features using an interior features metric; and (f) generates an orientation adjustment instruction for indicating to an operator to orient the 3D-depth camera in a second direction for use during a shipping container loading session, wherein the second direction is different than the first direction.

    SYSTEMS AND METHODS FOR AUTOMATIC CAMERA INSTALLATION GUIDE (CIG)

    公开(公告)号:US20210136750A1

    公开(公告)日:2021-05-06

    申请号:US17080436

    申请日:2020-10-26

    摘要: Three-dimensional (3D) depth imaging systems and methods are disclosed for assessing an orientation with respect to a container. A 3D-depth camera captures 3D image data of a shipping container. A container feature assessment application determines a representative container point cloud and (a) converts the 3D image data into 2D depth image data; (b) compares the 2D depth image data to one or more template image data; (c) performs segmentation to extract 3D point cloud features; (d) determines exterior features of the shipping container and assesses the exterior features using an exterior features metric; (e) determines interior features of the shipping container and assesses the interior features using an interior features metric; and (f) generates an orientation adjustment instruction for indicating to an operator to orient the 3D-depth camera in a second direction for use during a shipping container loading session, wherein the second direction is different than the first direction.

    SYSTEMS AND METHODS FOR AUTOMATIC CAMERA INSTALLATION GUIDANCE (CIG)

    公开(公告)号:US20200077383A1

    公开(公告)日:2020-03-05

    申请号:US16670446

    申请日:2019-10-31

    摘要: Three-dimensional (3D) depth imaging systems and methods are disclosed for assessing an orientation with respect to a container. A 3D-depth camera captures 3D image data of a shipping container. A container feature assessment application determines a representative container point cloud and (a) converts the 3D image data into 2D depth image data; (b) compares the 2D depth image data to one or more template image data; (c) performs segmentation to extract 3D point cloud features; (d) determines exterior features of the shipping container and assesses the exterior features using an exterior features metric; (e) determines interior features of the shipping container and assesses the interior features using an interior features metric; and (f) generates an orientation adjustment instruction for indicating to an operator to orient the 3D-depth camera in a second direction for use during a shipping container loading session, wherein the second direction is different than the first direction.

    THREE-DIMENSIONAL (3D) DEPTH IMAGING SYSTEMS AND METHODS FOR DYNAMIC CONTAINER AUTO-CONFIGURATION

    公开(公告)号:US20210012522A1

    公开(公告)日:2021-01-14

    申请号:US16509228

    申请日:2019-07-11

    摘要: Three-dimensional (3D) depth imaging systems and methods are disclosed for dynamic container auto-configuration. A 3D-depth camera captures 3D image data of a shipping container located in a predefined search space during a shipping container loading session. An auto-configuration application determines a representative container point cloud and (a) loads an initial pre-configuration file that defines a digital bounding box having dimensions representative of the predefined search space and an initial front board area; (b) applies the digital bounding box to the container point cloud to remove front board interference data from the container point cloud based on the initial front board area; (c) generates a refined front board area based on the shipping container type; (d) generates an adjusted digital bounding box based on the refined front board area; and (e) generates an auto-configuration result comprising the adjusted digital bounding box containing at least a portion of the container point cloud.