摘要:
System flexibility and ease-of-design is greatly enhanced in a network wireless/RFID switching device by using a multicore abstraction layer (MCAL) to interface between a multicore hardware platform, a device operating system and the packet transfer functions of the system. Such an architecture may be particularly useful in constructing switches capable of switching wireless networking (e.g. IEEE 802.11, 802.16), RFID or other network protocols, particularly using multi-core processors. A classification handler initially classifies the data packet. A plurality of protocol handlers each associated with a data protocol processes the data packet if the classification of the data packet matches the data protocol associated with the protocol handler, and one of several application handlers each associated with a user applications processes the data packet if the classification of the data packet matches the user application associated with the application handler. The MCAL is configured to send the data packet to the classification handler after the packet is initially received, and to subsequently direct the packet toward one of the protocol or application handlers in response to the classification of the data packet. MCAL further contains a set of the containers for handlers. Real application, protocol and classification handlers register with MCAL and are modules developed outside of the MCAL.
摘要:
System flexibility and ease-of-design is greatly enhanced by using a multicore abstraction layer (MCAL) to interface between a multicore hardware platform, a device operating system and the packet transfer functions of the system. Systems and techniques are described for processing a data packet received at a network interface of a network infrastructure device (such as a wireless switch) or other computing system, particularly using multi-core processors. A classification handler initially classifies the data packet. A plurality of protocol handlers each associated with a data protocol processes the data packet if the classification of the data packet matches the data protocol associated with the protocol handler, and one of several application handlers each associated with a user applications processes the data packet if the classification of the data packet matches the user application associated with the application handler. The MCAL is configured to send the data packet to the classification handler after the packet is initially received, and to subsequently direct the packet toward one of the protocol or application handlers in response to the classification of the data packet. MCAL further contains a set of the containers for handlers. Real application, protocol and classification handlers register with MCAL and are modules developed outside of the MCAL.
摘要:
A wireless router is provided which is configured to support a first subnet and a second subnet. The wireless router comprises a plurality of virtual wireless switches. Each virtual wireless switch comprises a plurality of access ports. The first subnet comprises a group of the access ports belonging to the first virtual wireless switch, and the second subnet comprises a second group of the access ports belonging to the second virtual wireless switch. The wireless router is configured to support layer 3 mobility when a client, having a client IP address from within the first subnet, roams from the first subnet to the second subnet, from the first to the second virtual wireless switch. The wireless router stores registration information associated with the client to allow a client to roam between the first subnet and the second subnet while keeping the client IP address. The wireless router uses the registration information to send packets to the client when the client has roamed to the second subnet.
摘要:
A method and apparatus for communicating between devices is described. In one embodiment, the method comprises running two or more instances of a switch MAC sublayer on a switch and managing the two or more instances of the switch MAC sublayer as multiple logical access points inside the switch.
摘要:
Techniques are provided for creating an active client list that can be distributed to a plurality of wireless switches. The wireless switches are located in a wireless local area network comprising a registration server, a plurality of active clients, and the plurality of wireless switches. Registration information associated with each of the active clients is communicated to the wireless switches that support those active clients. The registration information associated with each of the active clients from the wireless switches is communicated over an IP tunnel to the registration server. An active client list can then be created using the registration information for each active client. The active client list comprises a record for each active client in the wireless local area network. The record of each client comprises a MAC address of the client, a client IP address of the client, a home switch of the client, a visited switch of the client, inactivity timers for the home switch and the visited switch and location information. The active client list and the registration information for each active client can be communicated to each wireless switch.
摘要:
A method is provided for both layer 2 (L2) and layer 3 (L3) security in the context, for example, of a WISP-e protocol. An AES algorithm in CBC mode is used for encryption and decryption of the control frames. The session keys (e.g., 128-bit session keys) are derived from a pre-shared secret configured on both communicating wireless termination points.
摘要:
Techniques are provided for load balancing among a plurality of wireless switches configured to support a plurality of clients including a first client. An initial home wireless switch can be configured to initially support the first client. The initial home wireless switch can select one of the wireless switches as a new home wireless switch for the first client. These techniques can be implemented, for example, in a wireless local area network.
摘要:
Techniques are provided for techniques are provided for creating a mesh network in wireless local area network comprising a plurality of wireless switches. An IP address of the registration server can be configured on each of the wireless switches and used to open an IP socket from each of the wireless switches to the registration server. Each of the wireless switches register with a registration server by communicating configuration information about each of the wireless switches to the registration server. In one implementation, the configuration information for each switch comprises a switch IP address and a list of subnets the switch supports. The configuration information can be used by the registration server to create a wireless switch list which includes a listing of each of the wireless the switches in the wireless local area network. The configuration information about each of the wireless switches and the wireless switch list can then be communicated to each of the wireless switches. Each wireless switch can use the configuration information from each of the other wireless switches to create a mesh network of wireless switches. In one implementation, each of the wireless switches can use the configuration information and the wireless switch list to open a UDP/IP socket to each of the other wireless switches.
摘要:
A method and apparatus for communicating between devices is described. In one embodiment, the method comprises running two or more instances of a switch MAC sublayer on a switch and managing the two or more instances of the switch MAC sublayer as multiple logical access points inside the switch.
摘要:
A method and apparatus for communicating between devices is described. In one embodiment, the method comprises running two or more instances of a switch MAC sublayer on a switch and managing the two or more instances of the switch MAC sublayer as multiple logical access points inside the switch.