摘要:
In a method and magnetic resonance (MR apparatus for reducing aliasing artifacts in the imaging for MR-monitored high intensity focused ultrasound HIFU therapy, a primary coil is used to receive the MR signals, and an additional coil is provided to receive interfering MR signals that form aliasing artifacts in the MR-monitored HIFU therapy imaging. The MR signals received by the primary coil and the interfering MR signals received by the additional coil are concurrently acquired. The interfering MR signals received by the additional coil are removed from the MR signals received by the primary coil. MR images are generated based on the MR signals with the interfering MR signals removed. Aliasing artifacts caused by the interfering MR signals thus are removed from the MR images without reducing the resolution of the scanned body parts in the MR images. In addition, the MR scanning time can be—maintained by using a proper phase oversampling technology in the concurrent signal acquisition.
摘要:
In a method and magnetic resonance (MR apparatus for reducing aliasing artifacts in the imaging for MR-monitored high intensity focused ultrasound HIFU therapy, a primary coil is used to receive the MR signals, and an additional coil is provided to receive interfering MR signals that form aliasing artifacts in the MR-monitored HIFU therapy imaging. The MR signals received by the primary coil and the interfering MR signals received by the additional coil are concurrently acquired. The interfering MR signals received by the additional coil are removed from the MR signals received by the primary coil. MR images are generated based on the MR signals with the interfering MR signals removed. Aliasing artifacts caused by the interfering MR signals thus are removed from the MR images without reducing the resolution of the scanned body parts in the MR images. In addition, the MR scanning time can be maintained by using a proper phase oversampling technology in the concurrent signal acquisition.
摘要:
Improved patient comfort is provided by a symmetric local coil arrangement designed to support the production of an MRT image of a shoulder, wherein the housing of the local coil arrangement is composed of two separable parts. The symmetric local shoulder coil arrangement is designed to be useable for either of a right or left shoulder of a human subject by rotating the local coil arrangement about a rotational axis that is parallel to an axis of symmetry of the local shoulder coil and perpendicular to anterior and posterior members of the shoulder coil.
摘要:
Improved patient comfort is provided by a local coil arrangement designed to support the production of an MRT image of a shoulder, wherein the housing of the local coil arrangement is composed of two separable parts.
摘要:
In a system having a magnetic resonance imaging (MRI) apparatus and MRI-monitored medical equipment, the MRI-monitored medical equipment has an inductive coil built into the equipment that receives magnetic resonance signals from a subject and generates inductive electromagnetic signals according to the received magnetic resonance signals. The magnetic resonance imaging system has at least one reception coil that is positioned externally of the MRI-monitored medical equipment and that is connected to the magnetic resonance imaging system via a cable. The reception coil receives the electromagnetic signals that are generated by the inductive coil that is built into the medical equipment.
摘要:
In a high field magnetic resonance imaging apparatus and a method for obtaining signals having a high signal-to-noise ratio with the receiving coil thereof, the apparatus has at least a basic magnet and a receiving coil, the basic magnet generating a basic magnetic field, and the receiving coil being disposed within the basic magnetic field and forming an accommodating cavity. The accommodating cavity of the receiving coil is perpendicular to the direction of the basic magnetic field and is positioned in the field of view of the apparatus. The receiving coil is a loop type coil. The apparatus can further have a bracket for fixing the receiving coil. In the method, a receiving coil is used to receive signals in a magnetic field, wherein the receiving coil is perpendicular to the direction of the magnetic field. By using the apparatus and the corresponding method since the receiving coil can have a loop type design, the signal-to-noise ratio is increased. Moreover, the receiving coil can be disposed at a position closer to the center of the field of view, so that the imaging quality is improved.
摘要:
A magnetic resonance coil has an antenna portion for accommodating a body part to be examined, the antenna portion is formed by a number of constituent units connected in series, the positions between various constituent units are relatively movable. By moving the positions between the constituent units, a portion of the area between at least two constituent units overlaps. By increasing or reducing the number of the constituent units, or by adjusting the overlapped area between the constituent units, one pair or a number of pairs of the constituent units are made to overlap completely, so as to achieve the adjustment of the size of the antenna portion to accommodate a body part to be examined, and to make said antenna portion as close as possible to the body part to be examined, so as to obtain a signal with a relatively high signal-to-noise ratio, and to obtain a relatively high imaging quality.
摘要:
A magnetic resonance coil has an antenna portion for accommodating a body part to be examined, the antenna portion is formed by a number of constituent units connected in series, the positions between various constituent units are relatively movable. By moving the positions between the constituent units, a portion of the area between at least two constituent units overlaps. By increasing or reducing the number of the constituent units, or by adjusting the overlapped area between the constituent units, one pair or a number of pairs of the constituent units are made to overlap completely, so as to achieve the adjustment of the size of the antenna portion to accommodate a body part to be examined, and to make said antenna portion as close as possible to the body part to be examined, so as to obtain a signal with a relatively high signal-to-noise ratio, and to obtain a relatively high imaging quality.
摘要:
In a high field magnetic resonance imaging apparatus and a method for obtaining signals having a high signal-to-noise ratio with the receiving coil thereof, the apparatus has at least a basic magnet and a receiving coil, the basic magnet generating a basic magnetic field, and the receiving coil being disposed within the basic magnetic field and forming an accommodating cavity. The accommodating cavity of the receiving coil is perpendicular to the direction of the basic magnetic field and is positioned in the field of view of the apparatus. The receiving coil is a loop type coil. The apparatus can further have a bracket for fixing the receiving coil. In the method, a receiving coil is used to receive signals in a magnetic field, wherein the receiving coil is perpendicular to the direction of the magnetic field. By using the apparatus and the corresponding method since the receiving coil can have a loop type design, the signal-to-noise ratio is increased. Moreover, the receiving coil can be disposed at a position closer to the center of the field of view, so that the imaging quality is improved.
摘要:
A HIFU compatible receiving coil for MRI radio-frequency signals has an antenna and an amplifier connected to each other, each for receiving and amplifying MRI radio-frequency signals, and a filter positioned in front of the amplifier for filtering the HIFU low frequency signals received by the antenna at the same time as receiving the MRI radio-frequency signals. In a method for receiving the MRI radio-frequency signals and then for amplifying the same, the received MRI radio-frequency signals are filtered before being amplified, so as to filter out the HIFU signals received at the same time as the MRI radio-frequency signals. By this filtering, the HIFU signals among the HIFU signals and MRI radio-frequency signals simultaneously received by the antenna are filtered out at the same time as the HIFU treatment, and the remaining MRI radio-frequency signals are connected into the MRI system after being amplified by the amplifier for real-time imaging. Since the amplifier only processes the MRI radio-frequency signals, it can stay in a normal linear working status to ensure the normal proceeding of the subsequent real-time imaging.