摘要:
Spatially-efficient optical multiplexers and optical demultiplexers include elements interrelating along orthogonal axes. A transmission block of extreme thinness has highly reflective coatings on opposed parallel surfaces. Lasers of multiplexer are on one side of transmission block with transmission axes perpendicular to transmission block surface. An associated multiplexed signal transmitting port on opposite side of transmission block has receiving axis parallel to transmission block surface on that side. Detectors of demultiplexer are on one side of transmission block with reception axes perpendicular to transmission block surface. An associated multiplexed signal receiving port on opposite side of transmission block has receiving axis parallel to transmission block surface on that side. A unitary structure performs both optical multiplexer functions and optical demultiplexer function with a single thin transmission block. Related optical signal processing methods are included.
摘要:
Spatially-efficient optical multiplexers and optical demultiplexers include elements interrelating along orthogonal axes. A transmission block of extreme thinness has highly reflective coatings on opposed parallel surfaces. Lasers of multiplexer are on one side of transmission block with transmission axes perpendicular to transmission block surface. An associated multiplexed signal transmitting port on opposite side of transmission block has receiving axis parallel to transmission block surface on that side. Detectors of demultiplexer are on one side of transmission block with reception axes perpendicular to transmission block surface. An associated multiplexed signal receiving port on opposite side of transmission block has receiving axis parallel to transmission block surface on that side. A unitary structure performs both optical multiplexer functions and optical demultiplexer function with a single thin transmission block. Related optical signal processing methods are included.
摘要:
Asymmetrical interleavers and deinterleavers. In one example embodiment, an asymmetrical deinterleaver includes first, second, third, fourth, and fifth filter cells interleaved with first, second, third, and fourth waveplates and followed by a fifth waveplate. The filter cells are configured to filter optical signals propagating on first and second legs of an optical loop. The asymmetrical deinterleaver also includes a retro reflector optically coupled with the filter cells and waveplates. The retro reflector is configured to reflect the optical signals between the first leg and the second leg to form the optical loop. The asymmetrical deinterleaver further includes a single-fiber collimator optically coupled to the first leg of the optical loop and a dual-fiber collimator optically coupled to the second leg of the optical loop.
摘要:
Asymmetrical interleavers and deinterleavers. In one example embodiment, an asymmetrical deinterleaver includes first, second, third, fourth, and fifth filter cells interleaved with first, second, third, and fourth waveplates and followed by a fifth waveplate. The filter cells are configured to filter optical signals propagating on first and second legs of an optical loop. The asymmetrical deinterleaver also includes a retro reflector optically coupled with the filter cells and waveplates. The retro reflector is configured to reflect the optical signals between the first leg and the second leg to form the optical loop. The asymmetrical deinterleaver further includes a single-fiber collimator optically coupled to the first leg of the optical loop and a dual-fiber collimator optically coupled to the second leg of the optical loop.
摘要:
An embodiment of the invention includes a tunable optical dispersion compensator (TODC) comprising a first beam displacer on an optical path, wherein the first beam displacer separates an optical signal into a first beam and a second beam, and one or more polarizing beam splitters on the optical path, wherein the one or more polarizing beam splitters keep the first beam and the second beam on the optical path. The TODC also comprises one or more etalons on the optical path, wherein the one or more etalons are tunable to introduce a group delay in the first beam and the second beam, and a reflecting mirror on the optical path, wherein the reflecting mirror returns the optical signal back along the optical path. The TODC further comprises a second beam displacer, wherein the second beam displacer combines the first beam and the second beam into an output optical signal.
摘要:
Optical interleavers and deinterleavers. In one example embodiment, an optical deinterleaver includes first, second, and third filter cells interleaved with first and second waveplates. The filter cells are configured to filter optical signals propagating on first, second, and third paths of an optical loop. The optical deinterleaver also includes a retro reflector optically coupled with the filter cells and waveplates. The retro reflector is configured to reflect the optical signals between the first path and the second and third paths to form the optical loop. The optical deinterleaver further includes first, second, and third single-fiber collimators optically coupled to the first, second, and third paths of the optical loop, respectively.
摘要:
An embodiment of the invention includes a tunable optical dispersion compensator (TODC) comprising a first beam displacer on an optical path, wherein the first beam displacer separates an optical signal into a first beam and a second beam, and one or more polarizing beam splitters on the optical path, wherein the one or more polarizing beam splitters keep the first beam and the second beam on the optical path. The TODC also comprises one or more etalons on the optical path, wherein the one or more etalons are tunable to introduce a group delay in the first beam and the second beam, and a reflecting mirror on the optical path, wherein the reflecting mirror returns the optical signal back along the optical path. The TODC further comprises a second beam displacer, wherein the second beam displacer combines the first beam and the second beam into an output optical signal.
摘要:
In an embodiment, a DP-QPSK demodulator includes first, second and third polarization beam splitters (“PBSs”) and first, second and third half waveplates (“HWPs”). The first HWP is positioned to receive an output of the first PBS. The second PBS is positioned to receive an output of the first HWP. The second HWP is positioned to receive an output of the second PBS. The third PBS is positioned to receive an output of the second HWP. The third HWP is positioned to receive an output of the third PBS.
摘要:
An optical interleaver for use in a range of telecommunications applications including optical multiplexers/demultiplexers and optical routers. The optical device includes an optical processing loop which allows multi-stage performance characteristics to be achieved with a single physical filtration stage. Optical processing on the first leg and second legs of the loop is asymmetrical thereby improving the integrity of the optical signals by effecting complementary chromatic dispersion on the first and second legs. A fundamental filter cell within the interleaver filters optical signals propagating on each of the two legs of the optical loop which intersects the fundamental filter cell.
摘要:
An optical interleaver for use in a range of telecommunications applications including optical multiplexers/demultiplexers and optical routers. The optical device includes an optical processing loop which allows multi-stage performance characteristics to be achieved with a single physical filtration stage. Optical processing on the first leg and second legs of the loop is asymmetrical thereby improving the integrity of the optical signals by effecting complementary chromatic dispersion on the first and second legs. A fundamental filter cell within the interleaver filters optical signals propagating on each of the two legs of the optical loop which intersects the fundamental filter cell.