Abstract:
FIG. 1 is a perspective view of a spa pillow showing my new design; FIG. 2 is another perspective view thereof; FIG. 3 is a front elevational view thereof; FIG. 4 is a rear elevational view thereof; FIG. 5 is a left side elevational view thereof; FIG. 6 is a right side elevational view thereof; FIG. 7 is a top plan view thereof; and, FIG. 8 is a bottom plan view thereof. The broken lines in the drawings depict portions of the spa pillow that form no part of the claimed design.
Abstract:
The present invention relates to a smart equipment, a method used by a smart equipment, and a smart lamp. The smart equipment comprises a WiFi module and a Bluetooth Low Energy (BLE) module. The BLE module comprises a microcontroller unit (MCU). The WiFi module wirelessly downloads an OTA file. The microcontroller unit divides the OTA file into at least one packages. The Bluetooth Low Energy (BLE) module OTA upgrades a plurality of devices in a mesh network simultaneously by broadcasting the at least one packages.
Abstract:
The present disclosure relates to systems, methods and compositions for the generation of antibody-producing B cells in vitro. Some embodiments are related to an in vitro system for generating antibody-producing B cells from hematopoietic stem/progenitor cells (HSPCs).
Abstract:
A beam modulator (14) for modulating a beam (20) includes a modulator element (26) and a housing assembly (24). The modulator element (26) is positioned in the path of the beam (20). The housing assembly (24) retains the modulator element (26). Additionally, the housing assembly (24) defines a resonant cavity (328) with the modulator element (26) positioned therein. The housing assembly (24) includes a size adjuster (30) that can be moved to selectively adjust the size of the resonant cavity (328). As a result thereof, in certain embodiments, the resonant frequency of the beam modulator (14) can be easily tuned over a relatively large frequency range.
Abstract:
A lighter includes a pivot nozzle including a nozzle housing pivotally mounted at a lighter casing, a gas nozzle substantially supported in the nozzle housing in a stationary manner, and a retention skeleton having a predetermine flexibility is extended from a gas valve to the gas nozzle for guiding the gas emitting from a liquefied gas storage to the gas nozzle, wherein the nozzle housing is pivotally folded with respect to the lighter casing to selectively adjust a tilt angle of the gas nozzle while the retention skeleton retains the gas flowing towards the gas nozzle such that when the ignition button is depressed to depress the piezoelectric unit and to release the gas at the gas valve at the same time, the gas is emitted at the gas nozzle through the retention skeleton and is ignited by the sparks at the ignition tip of the piezoelectric unit.
Abstract:
The present invention is a hybrid cell that utilizes a PBS pair in conjunction with a wedge tuner and a crystal to achieve a more stable interleaver. A first PBS splits an incoming optical signal into two orthogonally polarized beams which follow different optical paths through the cell. The length of the wedge tuner and crystal are selected such that the periodicity of the cell is approximately inversely proportional to the free spectral range at a target frequency. The length of the wedge tuner and crystal are also selected such that there is no change in an optical path difference between the two optical paths with respect to a change in temperature over an operating temperature range.
Abstract:
For use in conjunction with a system for producing, at a transmitter location, time division multiplexed (TDM) frames having a plurality of channels of information signals and framing signals, communicating the frames from the transmitter location to a receiver location, and, at the receiver location, deframing the received frames to obtain frame timing signals and a bitstream of information signals which are coupled with a plurality of operating units. A technique for responding very quickly, upon loss of the TDM signal, to prevent misoperation of the operating units, including: at the transmitter, inserting a preselected pattern of bits in a timeslot of the information signals; at the receiver, detecting, in the deframed bit stream, the absence of the preselected pattern of bits, and producing a control signal in response; and producing override information signals that are coupled to the operating units when the control signal is present.
Abstract:
A bubble chamber spectrometer provides a new method for the sensitive detection of an analyte in a solvent. A bubble chamber receives a solution containing an analyte to be detected. A laser is adapted to direct an output laser beam through the bubble chamber, where the laser is selected to be absorbed by the analyte and to be transmitted by the solvent. A video camera is adapted to display passage of said laser beam through said bubble chamber so that bubbles in the solvent arising from energy deposition in the analyte can be counted to characterize the analyte both quantitatively and qualitatively.
Abstract:
As to enhance the rendering while minimizing needed computation time, the method comprises the steps of determining noise information, said noise information being representative of noise level estimated for at least a part of said image; the noise information being determined for the achromatic component of the image; sampling said part of the image according to said noise information; and rendering said at least a part of the image according to said sampling.
Abstract:
A high performance transmission optical subassembly is disclosed. The transmission optical subassembly includes a laser diode transmitting an optical transmission beam from a first facet of the laser diode. A reflective mirror reflects a first portion of the optical transmission beam to an end face of an optical fiber and an edge illumination monitor photodetector, having a light receiving facet that receives a second portion of the optical transmission beam, produces a laser diode control signal as a function of the received second portion of the optical transmission beam.