摘要:
An automatic channel selection (ACS) process enables an access point to determine a best channel available, i.e., the channel with a least amount of interference, for it operation. When ACS is enabled, the access point scans frequencies for all neighboring access points and their signal strengths. Based on this data, the access point then determines which frequency is least likely to be interfered with by these other access points. The access point switches itself to this frequency and begins operation. During normal operation, the access point may periodically rescan the air space and reevaluate its current operating channel. Preferably, every neighboring access point has its own channel, and the co-channel interference levels should be low enough so that there is a maximum coverage and high throughput for the network. If these characteristics cannot be achieved, the access point may then adjust its power automatically to reduce the interference level in the network. This automatic power adjustment (APA) feature preferably operates across a set of access points, each of which has the function. In this manner, the transmitting power of the neighboring access points in the wireless network is “cooperatively” adjusted to minimize the channel interference and maximize the coverage and throughput for the network. A method of determining optimal access point locations for access points that perform the ACS and APA functions is also described.
摘要:
To enable devices to detect L3 roaming users and to take appropriate forwarding actions, L3 knowledge is introduced inside a bridge in a non-intrusive way. In particular, as a client moves from a subnet associated with a first network element to a subnet associated with a second network element, a determination is made regarding whether the client is roaming. This is done by evaluating a source IP address within a L3 packet header within a first frame received at the second network element. If, as a result of the evaluating step, it is determined that the client is roaming, an L2 bridge forwarding table in the second network element is configured to include a source MAC address of the client together with information identifying at least a destination interface for use in directing client data traffic back towards the subnet associated with the first network element. The first frame is then forwarded. In one embodiment, the traffic is directed back towards the subnet associated with the first network element via a GRE encapsulation tunnel, although any convenient tunneling mechanism can be used. According to another feature, given information cached at the foreign access point is used to enable the roaming client to continue to seamlessly receive inbound traffic prior to or during the configuration of the L2 bridge forwarding table (i.e., before any outbound traffic is actually sent from the client).
摘要:
A wireless network access device includes a radio and support for virtual access points. According to the invention, each virtual access point has an independently configurable quality-of-service profile. The per-VAP QoS support enables multiple services to be delivered from a single physical access point. A plurality of transmit/receive queues are associated with each virtual access point (VAP) configured on the access device. Each queue in the plurality of queues is associated with a given quality-of-service level, such as (in decreasing order of priority): voice, video, best effort data, and background data. The access device further includes a data transfer mechanism in the form of a data packet forwarding engine that, for each VAP, transfers data from the plurality of queues to enforce the per-VAP QoS policy.
摘要:
An automatic channel selection (ACS) process enables an access point to determine a best channel available, i.e., the channel with a least amount of interference, for it operation. When ACS is enabled, the access point scans frequencies for all neighboring access points and their signal strengths. Based on this data, the access point then determines which frequency is least likely to be interfered with by these other access points. The access point switches itself to this frequency and begins operation. During normal operation, the access point may periodically rescan the air space and reevaluate its current operating channel. Preferably, every neighboring access point has its own channel, and the co-channel interference levels should be low enough so that there is a maximum coverage and high throughput for the network. If these characteristics cannot be achieved, the access point may then adjust its power automatically to reduce the interference level in the network. This automatic power adjustment (APA) feature preferably operates across a set of access points, each of which has the function. In this manner, the transmitting power of the neighboring access points in the wireless network is “cooperatively” adjusted to minimize the channel interference and maximize the coverage and throughput for the network. A method of determining optimal access point locations for access points that perform the ACS and APA functions is also described.
摘要:
Disclosed are systems and methods which provide interference mitigation by making alternative resources available within areas served by wireless communication links. Embodiments provide multiple channel availability in establishing wireless communication links to facilitate interference mitigation. Time domain techniques, spatial processing techniques, and/or frequency domain techniques may be implemented for spectrum management. Embodiments provide wireless base station configurations in which all or a plurality of base station sectors use a same frequency channel and/or in which each sector or a plurality of sectors use all frequency channels. Multi-channel strategies may be implemented such as to provide dynamic selection of a “best” frequency channel, to provide transmission of identical data on multiple channels for combining/selection at the receiver, and/or to provide for dividing the data for transmission on multiple channels.
摘要:
A fast roaming (handoff) service is provided for a WLAN infrastructure. A given mobile station (STA) obtains a pairwise master key (PMK) when it associates with an access point (AP) in the infrastructure. A neighbor graph identifies prospective APs to which the STA may then roam. At initialization, preferably the neighbor graph is fully-connected (i.e., each AP is assumed to be connected to every other AP). The PMK (obtained by the STA initially) is shared proactively with the neighbor APs as indicated in the neighbor graph. Thus, when the STA roams to a neighbor AP, because the PMK is already available, there is no requirement that the STA initiate a real-time request to an authentication server to re-associate to the new AP. Further, the new AP causes an update to the neighbor graph information implicitly by simply issuing a notification that it is now handling the STA that arrived from the prior AP; in this manner, the prior AP is confirmed as a neighbor, but there is no requirement for any inter-AP dialog before a given neighbor graph is updated. As roaming occurs the neighbor graph is pruned down (to reflect the actual neighbor AP connections) using the implicit notification data.
摘要:
Call admission control within a wireless network is implemented using a service controller that manages a set of access points. The call admission control (CAC) function for a given access point determines whether the access point has sufficient unused bandwidth to handle an additional call. The service controller makes this determination by monitoring the access points and evaluating certain probability functions and load conditions. In one embodiment, a determination of whether the access point has sufficient unused bandwidth to handle an additional call is a function of two (2) independent probabilities: (i) a probability of an active session moving to the access point from one or more neighbor access points, and (ii) a probability of an idle mobile device already associated with the access point entering into a new active session by initiating an inbound or outbound call. According to another aspect, the service controller issues and manages “call admission credits” among the set of access points, where a call admission credit value indicates a number of calls that idle mobile devices associated with the access point may initiate from the AP. The call admission credits value is a function of a determined load on the AP, and a mobility probability, which is a probability of an active call moving to the access point from one or more neighbor access points. The call admission credit value for the access point is adjusted as a function of a change of the load or in the mobility probability.
摘要:
A technique is disclosed to schedule frame transmissions in a wireless local area network. The network includes a plurality of stations configured to communicate on the same frequency channel with a plurality of access points. A central controller examines the transmission characteristics between the various stations and access points and identifies frames that may be simultaneously transmitted by a subset of the access points to their intended stations.
摘要:
An automatic channel selection (ACS) process enables an access point to determine a best channel available, i.e., the channel with a least amount of interference, for it operation. When ACS is enabled, the access point scans frequencies for all neighboring access points and their signal strengths. Based on this data, the access point then determines which frequency is least likely to be interfered with by these other access points. The access point switches itself to this frequency and begins operation. During normal operation, the access point may periodically rescan the air space and reevaluate its current operating channel. Preferably, every neighboring access point has its own channel, and the co-channel interference levels should be low enough so that there is a maximum coverage and high throughput for the network. If these characteristics cannot be achieved, the access point may then adjust its power automatically to reduce the interference level in the network. This automatic power adjustment (APA) feature preferably operates across a set of access points, each of which has the function. In this manner, the transmitting power of the neighboring access points in the wireless network is “cooperatively” adjusted to minimize the channel interference and maximize the coverage and throughput for the network. A method of determining optimal access point locations for access points that perform the ACS and APA functions is also described.
摘要:
A technique is disclosed to schedule frame transmissions in a wireless network. The network includes a plurality of stations configured to communicate on the same frequency channel with a plurality of access points. A central controller examines the transmission characteristics between the various stations and access points and identifies frames that may be simultaneously transmitted by a subset of the access points to their intended stations.