摘要:
A system includes a break-before-make automatic transfer switch (ATS) configured to selectively couple a utility grid and at least one distributed generator (e.g., a plurality of paralleled generators) to a load bus such that, in a state transition of the ATS, the utility grid and the at least one distributed generator are both disconnected from the load bus before the utility grid or the at least one distributed generator is connected to the load bus. The system further includes at least one converter configured to be coupled to the load bus and configured to provide power to the load bus during the state transition of the ATS.
摘要:
A system includes a first bus configured to be coupled to a grid and a second bus configured to be coupled to a load and/or a source. A first converter is configured to couple the first bus and the second bus and a second converter configured to couple an energy storage device to the second bus. The system further includes a controller configured to control the first and second converters such that the second converter controls a voltage and frequency on the second bus by energy transfer between the energy storage device and the second bus and the first converter transfers energy between the first bus and the second bus.
摘要:
A system includes a generator configured to be electrically coupled to a grid, an engine configured to drive the generator, and a solid state generator coupled between the grid and an energy storage device. The system further includes a bias controller configured to detect a frequency of the grid and to responsively provide a bias signal to a speed controller of the engine. The bias controller may include a frequency bias controller configured to generate a frequency bias load sharing signal responsive to the detected frequency of the grid and a load sharing controller that receives the frequency bias load sharing signal and that generates the bias signal responsive to the load sharing signal.
摘要:
A system includes a generator configured to be electrically coupled to a grid, a transmission configured to mechanically couple the generator to a prime mover, a converter circuit configured to be electrically coupled between the grid and an energy storage device, and a controller configured to control the converter circuit and the transmission. The controller may operate the converter circuit to source or sink power in response to a change on the grid meeting a criterion. The controller may be further configured to adjust a transmission ratio of the transmission based on a demand on the generator. The controller may also be configured to cause the transmission to mechanically decouple the generator from the prime mover while maintaining an electrical coupling of the generator to the grid so that the mechanically decoupled generator can contribute current to a fault on the grid.
摘要:
A system includes a converter configured to be coupled between an energy storage unit and a grid and a control circuit configured to detect frequency and voltage variations of the grid and to responsively cause the converter to transfer power and reactive components to and/or from the grid. The control circuit may implement a power control loop having an inner frequency control loop and a reactive component control loop having an inner voltage control loop. The control circuit may provide feedforward from the inner frequency control loop to the inner voltage control loop to inhibit reactive component transfer in response to a voltage variation deviation of the grid due to a power transfer between the energy storage unit and the grid.
摘要:
A system includes a break-before-make automatic transfer switch (ATS) configured to selectively couple a utility grid and at least one distributed generator (e.g., a plurality of paralleled generators) to a load bus such that, in a state transition of the ATS, the utility grid and the at least one distributed generator are both disconnected from the load bus before the utility grid or the at least one distributed generator is connected to the load bus. The system further includes at least one converter configured to be coupled to the load bus and configured to provide power to the load bus during the state transition of the ATS.
摘要:
A system includes a generator configured to be electrically coupled to a grid, an engine configured to drive the generator, and a solid state generator coupled between the grid and an energy storage device. The system further includes a bias controller configured to detect a frequency of the grid and to responsively provide a bias signal to a speed controller of the engine. The bias controller may include a frequency bias controller configured to generate a frequency bias load sharing signal responsive to the detected frequency of the grid and a load sharing controller that receives the frequency bias load sharing signal and that generates the bias signal responsive to the load sharing signal.
摘要:
A system includes at least one variable speed generator system configured to provide power to a load bus and at least one fixed speed generator configured to provide power to the load bus. The system also includes a solid state generator (SSG) system including at least one energy storage device and a converter coupled to the at least one energy storage device and configured to transfer power between the at least one energy storage device and the load bus. The system further includes a control system configured to control the at least one variable speed generator system, the at least one fixed speed generator and the SSG system responsive to changes in a load on the load bus.
摘要:
A system includes at least one generator coupled to an island grid, at least one energy storage unit and at least one converter coupled to the at least one energy storage unit and configured to be coupled to the island grid. The system further includes a control circuit configured to cause the at least one converter to transfer power between the at least one energy storage unit and the grid responsive to a change in a load on the island grid to maintain operation of the at least one generator at a predetermined operating point. The at least one generator may include a control system configured to match generator output to the load and the control circuit may be configured to maintain the control system of the at least one generator within a predetermined dynamic response capability limit responsive to the change in the load.
摘要:
The object of the invention is a liquid cooling arrangement of an inductive component and a method for manufacturing the inductive component. The inductive component comprises at least a core (1) assembled from separate structural elements (7, 7a, 7b) as well as liquid cooling ducts (8a) integrated into the core (1) for the purpose of liquid cooling and a winding structure (3) around the core (1). The core (1) is assembled from subassemblies formed from structural elements (7, 7a, 7b), which subassemblies are separately composed of e.g. vertical pillars (35), a top horizontal beam (36) and a bottom horizontal beam (37), and cooling liquid ducts (8a) or cooling liquid pipes (10) are placed in at least a part of the subassemblies before final assembly of the core (1).