Abstract:
A method of illuminating a pixel on a display to a desired brightness level that includes dividing a time required to reach a maximum brightness level into one or more time slices, varying a pixel voltage associated with the pixel according to a sequence of voltage values over the one or more time slices, and gradually increasing the brightness of the pixel according to the pixel voltage.
Abstract:
A method of processing an input image includes receiving an input signal associated with the input image. The input signal includes a plurality of components. The method also includes determining a minimum component of the plurality of components and determining a white signal level as a function of the minimum component. The method further includes multiplying the white signal level by a normalized value computed using a component of the plurality of components to provide a scaled white signal level.
Abstract:
Methods and systems for multiple primary color display are provided. Methods and systems of the present invention improve the spectrum efficiency of a color display system, and provide enhanced brightness and color gamut. In an embodiment, methods and systems of the present invention improve the brightness of a color display system employing a high pressure lamp by efficiently incorporating lights components of the lamp output that are outside the red, green, and blue spectrum in creating the color image.
Abstract:
Methods and systems for improved optical efficiency and brightness of display systems are provided herein. Embodiments use laser light sources in substantially continuous mode, thereby increasing the maximum overall output of an optical system. Embodiments exploit the small étendue of laser sources to lower the loss of throughput of an optical system. Embodiments enable a scrolling color scheme that allows a display system to be illuminated with two or more colors at any given time, thereby increasing the brightness of the display system. Embodiments can be used with liquid crystal displays and/or digital mirror displays. Embodiments can be used in single-panel and/or two-panel display systems.
Abstract:
A rear-projection screen structure, and an associated method, for creating on the front, image-viewing side of a rear-projection screen structure an anti-speckled, rear-projected, laser-beam image. Methodologically, and as implemented by the structure of the invention, the invention steps include projecting a source laser-image beam toward the rear side of such a screen structure, and while so projecting, introducing relative-motion optical diffusion in the laser beam path which exists between the source laser-image beam and the screen-structure's image-viewing side.
Abstract:
A rear-projection screen structure, and an associated method, for creating on the front, image-viewing side of a rear-projection screen structure an anti-speckled, rear-projected, laser-beam image. Methodologically, and as implemented by the structure of the invention, the invention steps include projecting a source laser-image beam toward the rear side of such a screen structure, and while so projecting, introducing relative-motion optical diffusion in the laser beam path which exists between the source laser-image beam and the screen-structure's image-viewing side.
Abstract:
A peripheral projection, display screen system including (a) a display screen having a rear side and a diagonal dimension, (b) an image-projection source coupled to a peripheral of the system and disposed at a defined, image-projection system depth rearwardly of the screen's rear side, (c) an optical path structure operatively interposed and optically coupling the source and the rear side of the screen, coupling the image from the source to the screen's rear side, and within the mentioned, defined image-projection system depth, a displayable image projected by the source, and (d) system geometry structure organizing the screen, the source, and the optical path structure, whereby the depth ratio of the diagonal dimension of the screen to the image-projection depth is equal to or more than 10:1.