摘要:
A receiver and method of detecting a guard interval estimate accurately by performing an Nth order polynomial based non-linear quantization on a pre-estimated guard interval in a received Orthogonal Frequency Division Multiplexing (OFDM) signal in a receiver is provided. The pre-estimated guard interval is obtained by performing normalized auto-correlation on the received OFDM signal. The method includes (i) performing a rounding operation on (a) one or more mth coefficient of the polynomial and (b) the pre-estimated guard interval to obtain an indexing parameter ‘k’, and detecting the guard interval estimate based on (i) a value of k, and (ii) a guard interval from one or more guard intervals that are stored in a look up table. The guard interval estimate is detected in accordance with an equation: {tilde over (L)}=L[k−4], where ‘L’ is the guard interval stored in the look up table that corresponds to the value of k.
摘要翻译:提供了一种通过在接收机中接收到的正交频分复用(OFDM)信号中对预估的保护间隔执行基于N阶多项式的非线性量化来准确地检测保护间隔估计的接收机和方法。 通过对所接收的OFDM信号进行归一化的自相关来获得预估的保护间隔。 该方法包括(i)对(a)多项式的一个或多个第m个系数和(b)预估保护间隔执行舍入运算以获得索引参数k,并且基于(i)检测保护间隔估计, k的值,以及(ii)存储在查询表中的一个或多个保护间隔的保护间隔。 根据以下等式来检测保护间隔估计:{tilde over(L)} = L [k-4],其中L是存储在查找表中对应于k的值的保护间隔。
摘要:
A system to implement a zero overhead software pipelined (SFP) loop includes a Very Long Instruction Word (VLIW) processor having an N number of execution slots. The VLIW processor executes a plurality of instructions in parallel without any limitation of an instruction buffer size. A program memory receives a Program Memory address to fetch an instruction packet. The program memory is closely coupled with the instruction buffer size to implement the zero overhead software pipelined (SFP) loop. The size of the zero overhead software pipelined (SFP) loop can exceed the instruction buffer size. A CPU control register includes a block count and an iteration count. The block count is loaded into a block counter and counts the plurality of instructions executed in the SFP loop, and the iteration count is loaded into an iteration counter and counts a number of iterations of the SFP loop based on the block count.
摘要:
A Software Defined Radio (SDR) subsystem capable of supporting a multiple communication standards and platforms for modulation, demodulation and trans-modulation of an input signal is provided. The SDR subsystem includes a Signal Conditioning Cluster (SCC) unit that includes a signal conditioning CPU adapted for sample based signal processing, a Signal Processing Cluster (SPC) unit that includes a signal processing CPU adapted for block based signal processing, and a Channel Codec Cluster (CCC) unit that performs a channel encoding or a channel decoding operation.
摘要:
A single frequency-based broadcast communication system includes a desired broadcast transmitter and one or more adjacent interfering broadcast transmitters in communication with a receiver over a communication channel is provided. Each of the broadcast transmitters includes a waveform generator for transmitting broadcast transmitter specific pilot signals to the receiver for receiving a superimposed transmitted broadcast transmitter specific pilot signal. The desired broadcast transmitter includes a pilot insertion module and a precoding filter module. The precoding filter module is designed to generate a transmitter specific precoding sequence based on a computed location index for specific pilot signals in a time frequency domain and precode a reference pilot signal to obtain the broadcast transmitter specific pilot signal sequences.
摘要:
A radio mapping architecture for applying machine learning techniques to mobile wireless radio access networks, including a base station, a user equipment (UE), and a network is provided. The radio mapping architecture includes a spectrum monitoring unit and a server and utilizes the UE. The server includes a radio mapping database and a Machine Learning module. The UE or the spectrum monitoring unit captures Radio parameters to derive an input schema for the radio mapping database. The spectrum monitoring unit extracts the Radio parameters that correspond to the base station and the UE and updates them in the radio mapping database periodically. The input schema for the radio mapping database is updated with the Radio parameters sensed by the spectrum monitoring unit and the UE.
摘要:
A system and method for switching one or more User Equipment (UEs) 116A-N from a unicast mode to a broadcast or multicast mode to transmit a streaming media content to the UEs 116A-N is provided. The system includes, an Over-the-top (OTT) platform 104, a CDN 112, the UEs 116A-N, a cellular core network 202, one-to-many offload core 204, an analytics engine 206, a database 208, one-to-many transmitter 210, a real time switching module 212, a Cellular base station 214 and a user specified rules module 222. The analytics engine 206 continuously analyzes real-time and historical data stored in the database 208 to identify the UEs 116A-N that receive a streaming media content through the unicast mode and the streaming media content to be offloaded. An offload is a process by which certain portions of the streaming media content is shifted from the unicast mode to the broadcast or multicast mode.
摘要:
A system and method for dynamically switching transmission of selected data from cellular core network to unidirectional point-to-multipoint downlink network or from unidirectional point-to-multipoint downlink network to cellular core network based on traffic flow analysis is provided. The system includes a cellular packet core 206, a broadcast offload packet core (BO-PC) 302, and a load manager 202. The cellular packet core 206 controls a cellular radio access network (RAN) 412 for providing bidirectional connectivity to a converged user equipment (UE) (204) to transmit or receive selected data through the cellular packet core 206 and the RAN 412. The BO-PC 302 controls a broadcast radio access network (RAN). The broadcast radio access network (RAN) includes at least one Broadcast Radio Head (BRH) 322 for providing unidirectional downlink path to the converged user equipment (UE) 204 to receive selected data through the at least one Broadcast Radio Heads (BRH) 322.
摘要:
A system and method for dynamically switching transmission of selected data from cellular core network to unidirectional point-to-multipoint downlink network or from unidirectional point-to-multipoint downlink network to cellular core network based on traffic flow analysis is provided. The system includes a cellular packet core 206, a broadcast offload packet core (BO-PC) 302, and a load manager 202. The cellular packet core 206 controls a cellular radio access network (RAN) 412 for providing bidirectional connectivity to a converged user equipment (UE) (204) to transmit or receive selected data through the cellular packet core 206 and the RAN 412. The BO-PC 302 controls a broadcast radio access network (RAN). The broadcast radio access network (RAN) includes at least one Broadcast Radio Head (BRH) 322 for providing unidirectional downlink path to the converged user equipment (UE) 204 to receive selected data through the at least one Broadcast Radio Heads (BRH) 322.
摘要:
Disclosed is a system and method for establishing a device to device communication link in cellular networks. The system includes one or more user equipments, and a base station. The one or more user equipments includes a first user equipment and a second user equipment. The first user equipment is configured with a first user equipment cognitive engine and the second user equipment is configured with a second user equipment engine. The base station that is coupled to a cellular tower and configured with an evolved packet core EPC. The base station and at least one of the one or more user equipments performs a method for establishing the device to device communication link in the cellular network using a transmit to receive transition gap (TTG) and a receive to transmit transition gap (RTG).
摘要:
In one embodiment, a processor performs a method of generating pipelined data read indexes and data write indexes for a Prime Factor Algorithm (PFA) Discrete Fourier Transform (DFT) without look-up tables. The processor is adapted to factorize an ‘N’ point PFA DFT into one or more mutually prime factors and zero or more non-prime factors, calculate a 0th column index for an ith row (Xi0), calculate an IndCor when the value of Xi0 equals zero and when a row number (i) does not equal zero, calculate Xij, generate the data read indexes, perform a DFT kernel computation on Lk point for the mutually prime factors and the non-prime factors, and generate the data write indexes for the mutually prime factors and the non-prime factors. Xij represents ith row and jth column of 2D input Buffer and enables a selection of a linear index from the 2D input buffer.