Abstract:
A seismic source using tuned pulse sources to form an ultra-low frequency (ULF) cluster intended for use in generating seismic energy impulses for marine seismic exploration and more specifically to improved performance by increasing low frequency output to within a range of 1 Hz to 3 Hz to provide greater penetration of the seismic signal through complex overburden such as salt or basalt.
Abstract:
A seismic source for generating seismic waves under water includes an operating head having an operating chamber, a cushion chamber, and discharge ports, a firing chamber attached to the operating head, the firing chamber configured to hold compressed air to be discharged through the discharge ports, and a shuttle assembly having a shaft located within the operating head and configured to prevent the compressed air in the firing chamber to enter the discharge ports when in a close state, and to allow the compressed air in the firing chamber to be discharged through the discharge ports when in an open state. The shaft of the shuttle assembly which extends in both the operating chamber and the cushion chamber, has a channel having a varying depth.
Abstract:
A torque relief system dissipates a torque in a marine cable section to be used for seismic data collection. The system includes a bench having a deadman unit; a tensioning element connected to the deadman unit; a swivel bearing unit connected to the tensioning element and configured to receive a first end of the marine cable section; and at least one bearing unit configured to support the marine cable section with reduced friction so that when the tensioning element tenses the marine cable section, the marine cable section and the first end rotate freely until the torque is dissipated.
Abstract:
There is a testing device for testing a sensor. The testing device includes a rotating mechanism; a first rotating plate connected to the rotating mechanism so that the first rotating plate rotates around an orbital axis (Z1); a second plate rotatably attached to the first rotating plate at a rotating point, the second plate having a rotational axis (Z2) offset from the orbital axis (Z1) by a predetermined distance R; and a gripping mechanism attached to the second plate and configured to receive and fix the sensor relative to the second plate. The second plate follows a circular trajectory with constant attitude around the orbital axis (Z1).
Abstract:
A seismic sensor detects a characteristic of a medium during a seismic survey. The seismic sensor includes a casing; a magnet located inside the casing; a coil assembly located inside the casing, wherein the coil assembly moves relative to the magnet; and a temperature-sensitive device connected to terminals of the coil assembly and configured to improve the damping. The magnet and the coil assembly produce some intrinsic damping and the additional damping introduced by the temperature-sensitive device is selected to counterbalance the temperature-dependent intrinsic damping so that a phase of a recorded seismic signal is compensated for temperature induced magnetic field changes.
Abstract:
A seismic streamer includes a sensor comprises an axially oriented body including a plurality of axially oriented channels arranged in opposing pairs; a plurality of hydrophones arranged in opposing pairs in the channels; a pair of orthogonally oriented acoustic particle motion sensors; and a tilt sensor adjacent or associated with the particle motion sensors. The streamer has a plurality of hydrophones, as previously described, aligned with a plurality of accelerometers which detect movement of the streamer in the horizontal and vertical directions, all coupled with a tilt sensor, so that the marine seismic system can detect whether a detected seismic signal is a reflection from a geologic structure beneath the streamer or a downward traveling reflection from the air/seawater interface.
Abstract:
A seismic streamer includes a sensor comprises an axially oriented body including a plurality of axially oriented channels arranged in opposing pairs; a plurality of hydrophones arranged in opposing pairs in the channels; a pair of orthogonally oriented acoustic particle motion sensors; and a tilt sensor adjacent or associated with the particle motion sensors. The streamer has a plurality of hydrophones, as previously described, aligned with a plurality of accelerometers which detect movement of the streamer in the horizontal and vertical directions, all coupled with a tilt sensor, so that the marine seismic system can detect whether a detected seismic signal is a reflection from a geologic structure beneath the streamer or a downward traveling reflection from the air/seawater interface.
Abstract:
A seismic streamer includes a sensor comprises an axially oriented body including a plurality of axially oriented channels arranged in opposing pairs; a plurality of hydrophones arranged in opposing pairs in the channels; a pair of orthogonally oriented acoustic particle motion sensors; and a tilt sensor adjacent or associated with the particle motion sensors. The streamer has a plurality of hydrophones, as previously described, aligned with a plurality of accelerometers which detect movement of the streamer in the horizontal and vertical directions, all coupled with a tilt sensor, so that the marine seismic system can detect whether a detected seismic signal is a reflection from a geologic structure beneath the streamer or a downward traveling reflection from the air/seawater interface.
Abstract:
A support structure for piezoelectric elements in a marine seismic cable is provided. The support structure comprises upper and lower cylindrical halves, each with channels formed therein. Two axial channels are adapted to retain three piezoelectric elements each. A third axial channel, positioned between the sensor element channels, is adapted to retain a flexible circuit. Transverse channels between the sensor element channels and the circuit channels accommodate extension from the flexible circuit. The piezoelectric elements are mounted within their respective channels with a resilient pad with adhesive on both sides. The piezoelectric elements are graded so that any group of three piezoelectric elements exhibits approximately the same sensitivity as any of the other three groups of piezoelectric elements on the support structure.
Abstract:
An air gun for generating seismic waves in a marine environment includes a cylindrical body configured to hold compressed air and having plural air ports for releasing the compressed air from inside the cylindrical body, the cylindrical body extending along a longitudinal axis X, and an extension member attached externally to the body and extending along a radial axis R, which is perpendicular to the longitudinal axis X. The extension member promotes ambient water flowing inside an air bubble generated when the compressed air is released outside the body.