Abstract:
A bale-forming chamber for an agricultural baler includes: a compacter configured to form collected crop material into a bale; and a pair of sidewalls each defining a respective boundary of the bale-forming chamber, at least one of the sidewalls including a dimpled surface having a plurality of dimples formed therein that each define a contactless region relative to the bale being formed in the bale-forming chamber.
Abstract:
A round baler may include a frame supported by one or more ground engaging devices, a bale forming chamber including sidewalls spaced apart a distance defining a width of the bale forming chamber, a discharge gate selectively operable between a baling position and a discharge position, and a bale forming apparatus, which forms the round bale in the bale forming chamber. The round baler may include a first set of spacers positioned adjacent at least one of the sidewalls reducing the effective width of the bale forming chamber.
Abstract:
A baling roller for a round agricultural baler includes a roller body with a jacket surface, which encloses the circumference and the length of the roller body. Furthermore, radially extending elevations are located, on the jacket surface, over the circumference and the length of the roller body. In order to optimize the pressing effect of the baling roller, the elevations on the jacket surface have a greater radial extension on the end areas of the roller body than in an area of the roller body, lying between the end areas.
Abstract:
A baling roller for a round agricultural baler and a round baler with such a baling roller are proposed. The baling roller comprises a roller body with a jacket surface, which encloses the circumference and the length of the roller body. Furthermore, radially extending elevations are located, on the jacket surface, over the circumference and the length of the roller body. In order to optimize the pressing effect of the baling roller, the proposal is made that the elevations on the jacket surface have a greater radial extension on the end areas of the roller body than in an area of the roller body, lying between the end areas.
Abstract:
A round baler is provided having a bale chamber that is partly covered by stationary side walls assuming the size and shape of the bale chamber and by a gate having a skirt which can be brought into an overlapping relationship with the side walls when the gate is closed.
Abstract:
An apparatus 10 for compacting and baling leaves, grass clippings, sticks, pine straw and other debris on lawns, yards, or fields is provided. The apparatus 10 may have diagonal brushes 26 to gather debris for processing though a crusher 28, a conveyor belt 30 to transport the crushed debris, and a baler 32 to compact and bale the debris. The baler 32 may compact the debris by rotating the debris in a continuous band 52, into which baling material 72 may be inserted to bale the debris. Alternatively, the debris may be gathered and feed into a crusher 28 that deposits the crushed debris directly into the baler 32 for compacting and baling. Further still, the apparatus 10 may gather the debris with brushes 26 and feed it onto a conveyor mechanism 30 that then introduces it into a crusher 28. The crushed debris may then be feed into a baling mechanism 32 that compacts and bales the debris for easy removal and disposal. In its various embodiments, the present invention may be connected to a prime mover 20 or alternatively connected to a portable base with a motor for driving the device 10.
Abstract:
A large round baler includes a wheeled chassis constructed as a separate unit including a tow bar adapted for connection to a tractor. Also constructed as separate units that are releasably secured to the chassis are a baling assembly and a crop receiving and/or processing assembly. The baling assembly is constructed in such a way that, by separating the baling assembly from the chassis either in its entirety or by tilting it about a longitudinal axis defined at a connection at one side of the chassis, baling belts may be moved over the entire periphery of the baling assembly and mounted into engagement with baling element support rolls forming part of the baling assembly.
Abstract:
A round baler having a single set of baling means, such as belts, which are trained over a serious of fixed and mobile rolls to form a bale having a larger diameter. Several loops are formed in the baling means. The loops are controlled by two pivot arms, and the position of these pivot arms is controlled by a common actuator.
Abstract:
A large round baler includes a bale forming assembly and a chassis constructed as separate units which, when disconnected and displaced from each other either entirely at an interface between the units or by tilting one unit about a longitudinal axis at one side of the interface, permit one or more flexible endless baling elements to be mounted in place on the baling assembly. Cross beams, which extend between and interconnect the opposite side structures of the bale forming assembly are located such, that they do not obstruct the space required to slide the endless baling element(s) over the baling assembly and into engagement with the bale forming rolls. Mounting of the flexible endless baling element requires the removal of one or more baling element support rolls from opposite side structures of the baling assembly and/or from opposite arms of a tensioning assembly.
Abstract:
In known large round balers, a rotating side wall is provided that can be pivoted away from a baling chamber either in a straight line or about a pivot axis, so that the pressure on the end faces of the cylindrical bale is reduced during the unloading process. A large round baler is proposed in which a support structure provided with rolls for supporting one or more flexible bale-forming elements, which can be pivoted about a pivot axle that penetrates the side walls of the baling chamber. At least one side wall is provided with a ramp having an inclined surface which is ramped outwardly from the side wall from top to bottom. The support structure is provided with an abutment member that can slide on the surface of the ramp so as to move from bottom to top when the support structure is raised to effect a discharge of a formed bale. The ramp is maintained in engagement with the abutment member, which travels in a vertical plane, due to outward deflection of the side wall, which results in a decrease of the force applied by the side wall on the bale and the frictional force resisting movement of the bale relative to the wall so as to aid in the discharge of the formed bale from the baling chamber.