Abstract:
A system for enhanced sealing against intrusion of moisture and other contaminants for medical/dental handpieces having rotating or other moving elements driven by a motor within the handpiece. The enhanced sealing includes tandem seals on stepped diameters to provide additional flow pathway impediments. The tandem seals preferably include spring seals that are positioned in opposite directions to provide enhanced sealing against pressures in two different directions that occur during the pressurization and vacuum cycles of an autoclaving process. Additional enhancements include the use of annular sealing rings with x-shaped cross sections.
Abstract:
A dental handpiece is disclosed including a turbine construction creating a radial in flow of air onto the impeller blades about the whole circumference of the turbine. This generates additional torque and avoids asymmetrical thrust on the impeller wheel. A pair of axially spaced air bearings support the turbine. Air supply to the bearings is controlled in such a way that the air bearings are floated before drive air is supplied to the turbine and after drive air to the turbine has been shut off. This ensures that the air bearings are always operational irrespective of the operational state of the turbine. The handpiece has an improved ergonomic shape, especially the shape and configuration of the front or drive head, which provides additional tooth clearance and a better field of view. An angled swivel connection to the umbilical cord is provided which reduces physical strain on the dentist's wrist. A self adjusting lock and key type torque connection between the dental burr and the chuck is provided which accommodates both conventional burrs and the burr of the lock and key arrangement. An auto stop arrangement for the turbine is disclosed which prevents a vacuum buildup during run-down of the turbine. The specific construction of the auto stop valve in accordance with the invention closes both the drive and exhaust air conduits.
Abstract:
In order to improve a surgical appliance comprising a housing having at least one sealed cavity, and a drive unit arranged in the housing, such that the cavity can be sealed in a simple way, and the formation of germs can be reduced or these can be removed in a simple way from the cavity, it is proposed that a fluid connection be provided for forming a flow path into and out of the cavity, and that at least one sealing element be provided for closing the fluid connection to liquid fluids and opening the fluid connection to gaseous fluids.
Abstract:
The invention concerns a handpiece for a surgical or dental tool (3), which can be inserted in the head of the handpiece (1) through an insertion hole (14) into a tool holder (2) and is rotationally supported by means of two axially separated bearings (12, 13), with positive torque transmission (8) to the tool (3) by the drive (9) installed in the handpiece, such that the tool possibly has a longitudinal bore (6) for supplying cooling liquid to the work site, and the handpiece (1) possibly has a short, fixed feed tube (7), which extends into the longitudinal bore and is sealed from the tool (3). To increase the torque that can be transmitted, the invention is characterized by the fact that the torque transmission (8) occurs in the region of the bearing (13) that is adjacent to the insertion hole (14). The invention also concerns the development of suitable tools.
Abstract:
Coupling device between a drive shaft (26) of a surgical instrument (28) and a tool (34; 106), characterized in that the coupling device (20) includes a fluid feed element fed from outside the coupling device (20) and communicating with a channel (78; 110) arranged in the tool (34; 106) and which emerges at a location along the length of the tool (34; 106).
Abstract:
The rotary motion created by a motor is transmitted from the drive shaft of the motor to the driven shaft through a pair of diametrically opposed balls fitted into a coupling mechanism attached to the drive shaft and through a pin fitted into holes formed in the opposed balls and through the driven shaft disposed between the opposed balls for eliminating vibration and noise. The thrust loads imposed in the structure supporting the motor is directed to bypass the motor through a bearing supporting the driven shaft through its housing and into the outer housing surrounding the motor. The motor is encased in a cartridge disposed in a central cavity of the outer housing and the cartridge is not rigidly attached to the outer housing so that the thrust loads bypass the motor.
Abstract:
A seal having a body and several bands extending away from the body. The bands extend around an axial portion of the body. In some embodiments, the bands project from and are formed integral with the body. For example, the bands can be rings. Two bands can be located on the outside of the body and two additional bands can be located on the inside of the body to provide redundant sealing components between separated fluids. A vent aperture can be positioned between the two bands on each side of the body. The two inner bands can be offset from the two outer bands. The seal can be used in a surgical cutting device, among other things.
Abstract:
A surgical motor designed to for power, noise and heat reduction for powering surgical tools where the surgical motor is modular constructed to house the vane motor for generating power in one module and the chuck and output shaft in the other module. A coupling mechanism for transmitting rotary motion from the vane motor to the output shaft includes balls made from elastomeric material to reduce vibrations and noise. The vane motor includes vanes that are contoured on the bottom edge, the spindle is undercut adjacent the vanes and peripheral edge of the spindle is grooved to enhance power, the inlet opening to the vanes are repositioned to increase the volume of inlet air, the inner surface is contoured to define a crescent seal adjacent to the spindle outer surface, the inlet and outlet to the spindle are repositioned to increase the power stroke of the vane, the discharge holes are oriented so that the vane edge sees a uniform contact surface during each revolution, the cylinder includes flow passages for cooling the cylinder and for flowing a portion of the air over the support bearings mounted downstream of the cylinder and including a return passageway to feed the inlet holes so that all pressurized inlet air are directed to impinge on the vanes and seal means, one made operable in situ and the other operating adjacent the inner race of the bearing prevents leakage of oil into ambient and into path of the surgical tool and the surgical motor includes an insert housing radially spaced from the main housing defining an air gap for reducing heat and the in the handle and resilient mounting means to isolate the vibrations to reduce noise and a thrust path bypassing the vane motor.
Abstract:
A air-driven cutting device for medical treatment (a handpiece (10)) comprises a housing (18) for a head portion (14). The housing (18) accommodates a rotary cylinder (60) for holding a cylindrical cutting tool (46) inserted through the tool inlet (42) of the housing, and a turbine blade (62) mounted around and secured on the rotary cylinder. With this arrangement, a compressed air is blown onto the turbine blade to rotate the turbine blade, the rotor and the cutting tool. Particularly, a part or a whole of the end portion of the rotary cylinder in the vicinity of the tool inlet is covered with the cover section (42) of the housing. Therefore, the rotary cylinder does not contact the teeth or the tissues of the buccal cavity.
Abstract:
Coupling device between a drive shaft (26) of a surgical instrument (28) and a tool (34; 106), characterized in that the coupling device (20) includes a fluid feed element fed from outside the coupling device (20) and communicating with a channel (78; 110) arranged in the tool (34; 106) and which emerges at a location along the length of the tool (34; 106).