Abstract:
A delivery apparatus for a prosthetic heart valve includes a shaft, an inner balloon, and an outer balloon. The shaft has a lumen extending from a proximal end portion to a distal end portion and a plurality of openings formed in the distal end portion. The shaft is configured such that a fluid can flow through the lumen and the openings. The inner balloon has end portions and a center portion disposed between the end portions. The inner balloon is mounted on the distal end portion of the shaft and is in fluid communication with the openings of the shaft. When the inner balloon is inflated with the fluid, the end portions expand farther radially outwardly than the center portion. The outer balloon is mounted to the shaft and disposed over the inner balloon. The outer balloon is configured to fully expand after the inner balloon at least partially expands.
Abstract:
A method of crimping a stent on a balloon of a catheter assembly is provided. A polymeric stent is disposed over a balloon in an inflated configuration. The stent is crimped over the inflated balloon to a reduced crimped configuration so that the stent is secured onto the balloon. The balloon wall membrane is wedged or pinched between the strut elements of the stent for increasing the retention of the stent on the balloon.
Abstract:
Described herein are systems and methods from delivering prosthetic devices, such as prosthetic heart valves, through the body and into the heart for implantation therein. The prosthetic devices delivered with the delivery systems disclosed herein are, for example, radially expandable from a radially compressed state mounted on the delivery system to a radially expanded state for implantation using an inflatable balloon of the delivery system. Exemplary delivery routes through the body and into the heart include transfemoral routes, transapical routes, and transaortic routes, among others.
Abstract:
A method of crimping a stent on a balloon of a catheter assembly is provided. A polymeric stent is disposed over a balloon in an inflated configuration. The stent is crimped over the inflated balloon to a reduced crimped configuration so that the stent is secured onto the balloon. The balloon wall membrane is wedged or pinched between the strut elements of the stent for increasing the retention of the stent on the balloon.
Abstract:
A system/assembly for delivery and deployment of an inflation expandable stent within a vessel, comprising a catheter having proximal and distal ends; a stent, inflation expandable from a delivery diameter to a deployment diameter, such that the delivery diameter is reduced from the deployment diameter for conforming the stent to the catheter, such that the stent, in its delivery diameter, is coaxially mounted on the catheter near the catheter distal end; an expandable inflation means coaxially mounted on the catheter axially within the stent, for expansion of the stent from the delivery diameter to the deployment diameter upon application of fluid deployment pressure to the inflation means; and a securement component coaxially mounted on the catheter, axially within the expandable inflation means, the securement component designed and adapted to provide a securement pressure to the stent in the delivery diameter to maintain the stent in position on the catheter during delivery to the deployment site.
Abstract:
A stent delivery catheter includes at least an inner and outer body, and a specially shaped balloon affixed near one end of both of the inner and outer bodies. At least the outer body is tubular, and the space between the outer and inner bodies defines an inflation lumen for inflating and deflating the balloon. The balloon is designed to surround and hold a compressed self-expanding stent in a small initial size. An inner portion of the cylindrical balloon extends from where it is affixed to the inner body of the catheter shaft at a point proximal to the stent to a distal leading edge at a point distal to the stent. At this leading edge, the balloon is folded back upon itself, and an outer portion of the balloon extends proximally from the leading edge to a point proximal of the stent where it is affixed to the outer body of the catheter shaft. When the outer body is retracted in the proximal direction, the balloon progressively peels back or everts, to progressively release the stent. This peeling action minimizes any friction that may exist between the stent and balloon during stent deployment. The leading distal folded edge of the balloon, both inner and outer portions, are tapered inward. This inner and outer tapering of the balloon portions tends to protect the leading edge of the stent, provides for easier advancement of the catheter system along the desired body passageway for treatment, and minimizes friction as the balloon is retracted or peeled back upon itself.
Abstract:
The invention consists of an endoluminal prosthesis adapted for placement at a bifurcation site within the body. The stent or stent-graft may be constructed to have segments of differing structural properties. A section of the stent-graft may be constructed to have a single-lumen tubular stent member covering a multilumen graft member. The stent-graft may comprise at least two modular components adapted for in situ assembly. An extended cylindrical interference fit may be used to seal the modular components.
Abstract:
An angioplasty and stent delivery system to facilitate introduction and placement of a stent, including a catheter having an expandable distal portion constructed and arranged for expanding the outer diameter of the catheter from a contracted state to an expanded state: a stent positioned around the distal portion of the catheter having a contracted condition and being expandable to an expanded condition, and being sized in the contracted condition to closely surround the catheter in the contracted state, the expandable distal portion of the catheter including a balloon within which or over which there is included on a catheter shaft at least one axially movable or enlargeable body of a diameter larger than the catheter shaft to which the stent and balloon are fitted, as by crimping, for holding the stent in place until it is released therefrom by expansion of the balloon.
Abstract:
A stent delivery system to facilitate introduction and placement of a stent, including a catheter having an expandable distal portion constructed and arranged for expanding the outer diameter of the catheter from a contracted state to an expanded state: a stent positioned around the distal portion of the catheter having a contracted condition and being expandable to an expanded condition, and being sized in the contracted condition to closely surround the catheter in the contracted state, the expandable distal portion of the catheter including a balloon within which there is included on the catheter shaft at least one body of a diameter larger than the catheter shaft to which the stent and balloon are fitted, as by crimping, for holding the stent in place until it is released therefrom by expansion of the balloon and further including axially slidable sleeves over the stent in the unexpanded condition.
Abstract:
A stent delivery system comprising a catheter including a stent mounting region. A stent is disposed about the stent mounting region of the catheter, the stent having a distal end and a proximal end. The stent further having an unexpanded state and an expanded state, and at least one stent retaining sleeve having a first end and a second end. The first end overlying an end of the stent when the stent is in the unexpanded state, the second end engaged to at least a portion of the catheter adjacent to the stent mounting region. The at least one stent retaining sleeve being at least partially composed of at least one hydrophilic elastomeric material.