Abstract:
Provided are a seamless can body having excellent pressure resistance and a method for producing the seamless can body. The seamless can body according to the present invention includes a tubular body section (10), a peripheral ground section (20b) continuing from a lower end of the tubular body section, and a raised bottom section (30) continuing from the peripheral ground section toward a center-axis side. When an outer surface area of the raised bottom section is denoted by AD and an area of a virtual plane an outline of which is formed by the peripheral ground section is denoted by AB, a relation of 1.55 ≥ (AD/AB) ≥ 1.40 is satisfied.
Abstract:
A can, and device and method for producing same, includes two circular end elements forming a base and lid. The can further includes a sleeve which has fold lines forming edges, the can sleeve having a circular cross-sectional area at both ends and a polygonal-sectional area in its central region. The polygonal cross-sectional area in the central region is at most decagonal.
Abstract:
A metal food can including a metal sidewall is provided. The diameter of the sidewall varies at different axial positions along the sidewall. The can includes a can end coupled to an end of the metal sidewall, and a plurality of circumferential beads formed in the metal sidewall. The shape of each circumferential bead varies based upon the diameter of the section of the sidewall in which the beads are formed.
Abstract:
A method of forming a pair of opposed side walls and a pair of opposed end walls of a sheet metal casket shell from a single piece of sheet metal. The piece of sheet metal has opposite ends and a length equal to the combined length of the pair of side walls and the pair of end walls of the casket shell to be formed. The opposite ends of the piece of sheet metal are secured together to form a tube. A roll forming roller is positioned in an interior of the tube. A female die configured to produce a desired profile for the side walls and the end walls of the casket shell is positioned around an exterior of the tube. The roller is moved outwardly so as to contact an interior surface of the tube and deform the tube toward a die cavity of the female die. The roller is rolled around a perimeter of the interior of the tube so as to deform the perimeter of the tube toward the die cavity of the female die. The desired profile for the side walls and the end walls of the casket shell is thereby produced.
Abstract:
A rotatable forming apparatus and a method for modifying a shape of a container. The rotatable forming apparatus includes a frame and a forming turret assembly. The forming turret assembly includes a drive shaft, a fixed turret portion, a turret starwheel, an axially moveable turret portion and forming ram assemblies. The forming ram assemblies extend around and connect to the axially movable turret portion. Each of the forming ram assemblies includes cam followers, a forming die, a knockout tooling device and a drive cylinder. The cam followers are configured to follow the cam as the forming ram assemblies rotate around the stationary cam. The forming die is operatively connected to the cam followers such that the forming die moves in the vertical direction while following the cam. The drive cylinder causes axial movement of the knockout tooling device and is configured to operate independently of the forming die.
Abstract:
The present invention provides an expansion die for manufacturing containers including a work surface including a progressively expanding portion and a land portion; and an undercut portion positioned following the land portion of the work surface. The present invention further provides a process for manufacturing shaped containers including providing a container stock having a first diameter; expanding at least a portion of the container stock to a second diameter with at least one expansion die; and forming an end of the container stock to accept a container lid.
Abstract:
A method of producing a can body in which, when a barrel section of the can body is held between the outer peripheral surfaces of first and second rotation bodies (20, 21), the barrel section is pressed radially inward by a second projection (21a) from the outer periphery side of the barrel section such that at least a part of the quantity of deformation in the direction of the pressing is elastic deformation, the second projection (21a) is fitted into a first recess (20a) with the barrel section in between and with that portion of the inner periphery side of the barrel section which corresponds to the elastically deformed portion advanced into the first recess (20a), and after that, when the holding of the barrel section by the outer peripheral surfaces of the first and second rotation bodies (20, 21) is released, that portion of the barrel section that corresponds to the first recess (20a) and the second projection (21a) is caused to restore radially outward, thereby the outer peripheral surface of that portion of the barrel section which corresponds to the first projection (20b) is caused to position more outside than that outer peripheral surface of the barrel section which excludes the outer peripheral surface of that portion of the barrel section which corresponds to the first recess (20a) and the second projection (21a).
Abstract:
A thin walled body is deformed in a process in which the body is gripped securely in a holding station and, whilst gripped in the holding station, tooling engages to deform the peripheral wall of the body at a predetermined wall zone. The tooling is provided at a tooling station which is adjacent the holding station during deformation. The predetermined wall zone is co-aligned with the tooling by rotation of the body about an axis prior to securing at the holding station.
Abstract:
A can body with a jacket-like closed wall and a base constructed on one end of the can wall includes an external base covering in the form of a sheet material. The base covering is fixed into position on an annular connection region of the can body. The base covering can form a basically flat imprintable region in a main region that is surrounded by the connection region. If a bar code can be applied in this imprintable region, then a restriction of the configuration possibility of the can wall disappears. The base covering can form a stand region whereby a standing can body is only in contact with the support surface if necessary via the base covering, and consequently the occurrence of corrosion problems is prevented. A retaining device that leaves the base of a held can body free and a position fixing apparatus are used for fixing the base covering into position. A decorative foil on the exterior of the can wall can be overlapped by the base covering, which serves to prevent a detachment of the decorative foil on the base.
Abstract:
A pressing member 44 is pressed from the outside against a peripheral wall of a can shell 4 whose interior is maintained at a predetermined pressure by gas, to form a recess-deformed portion 56 having a predetermined shape on the peripheral wall of the can shell 4. Thereby, three-dimensional patterns can be formed by recess-deforming desired portions of the can shell 4 while preventing the strength of the can shell 4 from being deteriorated and preventing the inner surface of the can shell 4 from being scratched or the coating from being damaged, by which outer shape processing with high design performance can be easily applied to the can shell 4 at a low cost.