Abstract:
A driver for applying torque to threaded fasteners has a plurality of teeth extending along and projecting outwardly from a longitudinal axis of a body on which the teeth are located. The teeth have a helical twist about the longitudinal axis. Each tooth has an angularly oriented engagement surface which is engageable with similarly angularly oriented surfaces within recesses in the head of a compatible fastener. When the driver engages the recesses torque applied to the driver draws the driver deeper into the recesses as the engagement surfaces react against and slide over the angularly oriented surfaces within the recesses. The torque also causes the fastener to turn and advance or retract depending upon the sense of the torque and the angles of the engagement surfaces and the angles of the surfaces within the recesses. The fastener and its method of manufacture are also disclosed.
Abstract:
A drive system with full surface drive contact. The drive system tends to maximize the surface contact pattern or area at typical bit-recess reaction (drive) torque values, thereby tending to minimize bit-recess surface contact stresses, coating damage, recess ream and premature bit fatigue failure. The drive system comprises a fastener and/or bit having drive surfaces formed of either polygon involutes or a single arc construction. A punch is also provided for forming a recess in either the fastener or the bit, wherein the punch has corresponding surfaces.
Abstract:
A recessed fastener includes a head with a top face and a drive socket, a shank extending downward from the head, and threads helically around the shank. The drive socket has a bottom and drive walls extending upward therefrom. The bottom meets the drive walls at a bottom border. The drive walls meet the top face at a top border. The bottom border and the top border have respective first and second corners. The first corners are rotatably offset relative to the second corners. A joining line is connected between each first corner and each second corner, and one drive wall formed between two adjacent joining lines is in a spiral form. The spiral drive walls leads a driving tool toward the bottom to produce an automatic downward pressing force which facilitates the close engagement, thereby obtaining a quick driving operation, an increased driving power and a labor-saving effect.
Abstract:
A screw includes a head having a top surface where a drive socket and drive regions are recessedly formed. Each drive region has two non-parallel side walls and two different drive walls. One drive wall is connected to the side walls to form a groove communicating with the drive socket. The other drive wall is connected between two adjacent side walls of two adjacent grooves. At least one of the drive walls slopes downwards from the top surface at a slope of at least 1 degree. Each side wall connecting between the drive walls deviates inwards by an angle difference of at least 1 degree. The slope and the inward deviation of the walls receive a driving tool firmly to prevent a swinging problem and enhance the torque transmission. A punch adapted to form the recessed screw also facilitates a long-term production without losing the accuracy thereof.
Abstract:
A method for manufacturing a bolting part, such as a screw or a nut. The bolting part having a head with a periphery having at least one shoulder extending in a radial plane. The method includes at least the following forming steps: shearing of a wire of material so as to obtain a part of determined length, calibration of the part so as to correct the geometry of the part, rough machining of the calibrated part so as to obtain the head of the bolting part, and finishing of the rough-machined part by means of a third punch so as to form a head having at least one shoulder. The calibration, rough machining and finishing steps being carried out only by cold heading.
Abstract:
A method of manufacturing fastenings or fasteners with radial outer contours, especially screws or threaded bolts, made of solid metal is performed by a device. The method manufactures the fastenings or fasteners preferably on a multi-stage press. Several recesses running in an axial direction at a fixed radial distance are formed in the shank-shaped section of a blank. The prefabricated blank with the recesses is inserted into a multi-part split mold within a multi-stage press, whose die stocks have an inner profiling forming the outer contour, and are opened in the starting position, that at the places where the die stocks are opened, there are the recesses. During the closing movement of the die stocks, at least one radial outer contour is pressed on the shank-shaped section of the blank by radial action of forces, with the recesses preventing material from getting between the die stocks during the pressing process.
Abstract:
A method of manufacturing fastenings or fasteners with radial outer contours, especially screws or threaded bolts, made of solid metal is performed by a device. The method manufactures the fastenings or fasteners preferably on a multi-stage press. Several recesses running in an axial direction at a fixed radial distance are formed in the shank-shaped section of a blank. The prefabricated blank with the recesses is inserted into a multi-part split mold within a multi-stage press, whose die stocks have an inner profiling forming the outer contour, and are opened in the starting position, that at the places where the die stocks are opened, there are the recesses. During the closing movement of the die stocks, at least one radial outer contour is pressed on the shank-shaped section of the blank by radial action of forces, with the recesses preventing material from getting between the die stocks during the pressing process.
Abstract:
A screw plug for a liquid conduit, particularly an oil pipe or an oil container, comprising a cylindrical shaft that is placed on a top plate and is provided with an external thread. A pocket hole having a polygonal cross section is centrally arranged on the top plate as a receiving member for a tool. The shaft is embodied as a tubular butt that is provided with the external thread. A pocket hole which is arranged coaxial to the pocket hole of the top plate extends from the face of the shaft. In order to produce the screw plug, a blank comprising the cylindrical tubular butt that is connected to the top plate in a molded on manner is made, the inner diameter and outer diameter of the tubular butt being smaller than the final corresponding diameters (e, f) of the screw plug. The tubular butt of the blank is then enlarged by applying pressure to the inner wall surface of the pocket hole thereof. Also disclosed is a tool in which one end of a pressure die is fixed as a mandrel-type tool while a supporting or holding head which is disposed so as to be movable relative thereto and encompass a seat for a blank is associated with the free end thereof.
Abstract:
The fastener of this application is designed to facilitate the insertion of rotating power driven tools into the fastener recess. The recess of this fastener generally uses spirally configured driving surfaces and is formed in a counterbore in the upper surface of the fastener. The driving lobes have upper surfaces that are depressed a distance into the counterbore. A ramp surface is formed on each of the upper surfaces that causes a spinning bit to fall into the recess in an engaged manner. The ramp surfaces are constructed with both removal and installation ramp portions.
Abstract:
A screw head slot shaper includes a shank and a head slot molding member formed on an upper end of the shank. The shake can be of any shape and of a proper length. The head slot molding member has plural square layers, which respectively have different sizes. So a single screw head slot shaper can manufacture screws with a head formed with a single layer slot, a two-layered slot or a three-layered slot depending on demands. Thus many different tools may conveniently be used for driving screws with a head with a slot of a single or plural square layers.