Abstract:
A method for operating a hydrostatic vehicle steering system includes rotationally operating an input shaft via a steering handle, rotary operating a steering dosing valve via an output shaft, the steering dosing valve used for hydraulic actuation of a steering cylinder interacting with steerable vehicle wheels, establishing a releasable rotary connection between the input shaft and the output shaft via a clutch, applying a predefinable steering torque to the output shaft via an actuating drive, automatically assuming a closed clutch position of the clutch under the effect of a restoring spring force in a first operating mode intended for manual steering operation, and bringing the clutch into an open clutch position counter to the effect of the restoring spring force via a controller in a second operating mode intended for autonomous steering operation.
Abstract:
A hydraulic steering unit (2) includes a steering unit (2) including a supply port arrangement having a supply port (P) and a return port (T), a working port arrangement having two working ports (LR), a steering valve arrangement having two valve elements (32, 33) arranged in a housing (30, 38, 39) and being moveable in relation to each other to change characteristics of orifices, and a measuring motor (9) arranged in a line between the steering valve arrangement and one of the working ports (LR). A hydraulic steering unit should create similar end stop sealings in both steering directions. To this end, backpressure means are provided generating a backpressure on the measuring motor (9), wherein the backpressure means are controlled by the valve element (32, 33), and friction means (43, 43′) are provided between one of the valve elements (33) and the housing (30, 38, 39) or a rotating part of the measuring motor (9) and the housing (30, 38, 39), respectively.
Abstract:
A hydraulic steering unit (1) is described comprising a supply port arrangement having a pressure port (8) connected to a main flow path (6) and a tank port (T) connected to a tank flow path (7), a working port arrangement having a left working port (L) connected to a left working flow path (9) and a right working port (R) connected to a right working flow path (10), a bridge arrangement (14) of variable orifices having a first left orifice (A2L) connected to the main flow path (6) and to the left working flow path (9), a first right orifice (A2R) connected to the main flow path (6) and to the right working flow path (10), a second left orifice (A3L) connected to the left working flow path (9) and to the tank flow path (7), and a second right orifice (A3R) connected to the right working flow path (10) and to the tank flow path (7). Such a hydraulic steering unit should allow comfortable steering. To this end a measuring motor arrangement is arranged in one of the left working flow path (9) and the right working flow path (10), the measuring motor arrangement (15) having a first measuring motor (16) and a second measuring motor (17).
Abstract:
A hydraulic steering unit (1) is described, said hydraulic steering unit (1) comprising a supply port arrangement having a pressure port (P) connected to a main flow path (3) and a tank port (T) connected to a tank flow path (4), a working port arrangement having a left working port (L) connected to a left working flow path (5) and a right working port (R) connected to a right working flow path (6), a bridge arrangement (14) of variable orifices having a first left orifice (A2L) connected to the main flow path (3) and to the left working flow path (5), a first right orifice (A2R) connected to the main flow path (3) and to the right working flow path (6), a second left orifice (A3L) connected to the left working flow path (5) and to the tank flow path (4), and a second right orifice (A3R) connected to the right working flow path (6) and to the tank flow path (4). Such a hydraulic steering unit should be operated together with a pressure source of fixed displacements. To this end an idle flow path (15) branches off the main flow path (3), wherein a variable idle orifice (An) is arranged in the idle flow path (15), the idle orifice (An) being open in neutral position and closing out of neutral position.
Abstract:
A hydraulic steering unit (3) is disclosed comprising a working port arrangement (L, R) having two working ports (L, R), a supply port arrangement having a high pressure port (P) and a low pressure port (T), a main flow path (7) having a main bleed (A1) and a metering device (8) and being arranged between said high pressure port (P) and said working port arrangement (L, R), an amplification flow path (9) having an amplification bleed (Au) and being arranged between said high pressure port (P) and said working port arrangement (L, R), said main bleed (A1) and said amplification bleed (Au) being controlled together by means of a steering handle (6) and being closed in neutral position of said steering handle (6), and a drain bleed (Ad) which is open in neutral position of said steering handle (6), said drain bleed (Ad) connecting a point (11) upstream said main bleed (A1) and said amplification bleed (Au) to said low pressure port (T).
Abstract:
A steering system for a vehicle includes a fluid pump, an actuator in selective fluid communication with the fluid pump, a hydrostatic steering system and an electro-hydraulic steering system. The hydrostatic steering system includes a fluid controller having a first proportional valve in fluid communication with the fluid pump and a fluid meter in fluid communication with the first proportional valve and the actuator. The electro-hydraulic steering system includes a second proportional valve in selective fluid communication with the fluid pump and the actuator. The second proportional valve is disposed in parallel to the first proportional valve. The electro-hydraulic steering circuit further includes a load-reaction switching valve assembly disposed in series with the first proportional valve of the hydrostatic steering system. The load-reaction switching valve allows fluid communication between the actuator and the fluid controller when the first proportional valve is in a neutral position.
Abstract:
A hydraulic steering unit (3) is disclosed comprising a working port arrangement (L, R) having two working ports (L, R), a supply port arrangement having a high pressure port (P) and a low pressure port (T), a main flow path (7) having a main bleed (A1) and a metering device (8) and being arranged between said high pressure port (P) and said working port arrangement (L, R), an amplification flow path (9) having an amplification bleed (Au) and being arranged between said high pressure port (P) and said working port arrangement (L, R), said main bleed (A1) and said amplification bleed (Au) being controlled together by means of a steering handle (6) and being closed in neutral position of said steering handle (6), and a drain bleed (Ad) which is open in neutral position of said steering handle (6), said drain bleed (Ad) connecting a point (12) upstream said main bleed (A1) and said amplification bleed (Au) to said low pressure port (T).
Abstract:
The invention concerns a hydraulic steering (1) with a steering motor (8), a steering unit (2) with feedback behavior, a steering member activating the steering unit (2) and a shock valve arrangement (50) between the steering motor (8) and the steering unit (2). It is endeavored to enable changes of the feedback behavior in a simple manner. For this purpose it is ensured that a switchable feedback suppression device (9) is located at the side of the shock valve arrangement (50) facing away from the steering motor (8).
Abstract:
A steering system for a differential steered self-propelled agricultural windrower, windrower speed and direction controlled by adjusting the pivotal position of rotatable pintel arms to control the output of a pair of tandem-mounted hydraulic drive pumps and provide motive power for the windrower. A control input shaft that is both rotatable and axially moveable manages the relative positioning of the pintel arms. A hydraulic steering motor is operably connected to the input shaft. Rotation of the hydraulic steering motor is managed by a steering control valve attached to a cab-mounted windrower steering wheel.
Abstract:
An integrated steering control system includes a primary, automatic and rear control valves. A steering wheel operates the primary steering control valve and is of a type which includes a leakage characteristic. Steering wheel movement is sensed and a signal is sent which results in the automatic steering control valve being operated for adding fluid that supplied to a steering cylinder by the primary steering control valve in order to compensate for leakage, the amount of added fluid being a function of vehicle ground speed. An electric actuator with position feedback is used for ground speed control. Whenever the actuator position shows that the ground speed is set to zero and a switch in the hydro-handle slot shows that the handle is in the Park position, the automatic steering control valve is activated to move the steering cylinder to a neutral, straight ahead position, as determined by a sensor in a mechanical linkage of the steering control.