Abstract:
An imaging apparatus includes a door configured to be openable and closable with respect to a housing and to support a sheet, an extender configured to be stored in the door and to support a sheet, and a mechanism configured to rotate the extender in conjunction with opening and closing the door. The extender rotates and protrudes from the door when the door is opened, and the extender rotates and is stored in the door when the door is closed.
Abstract:
A sheet detecting apparatus includes a turning portion, a sensor outputting a detection signal in response to turning of the turning portion to the detecting position, a first sliding contact portion sliding in contact with the protruded portion so as to move relatively to the protruded portion in an axial direction of the turning portion when the turning portion returns from the detecting position to the home position, and a second sliding contact portion sliding in contact with the protruded portion so as to move relatively to the protruded portion in the axial direction of the turning portion when the turning portion turns from the home position to the detecting position.
Abstract:
A card dispensing apparatus having a compact configuration has a housing to support a stack of cards on a fixed base. Openings in the base member can permit surfaces from a conveying member to extend into the housing and contact a surface of the lowest card. The conveyer member can move horizontal to a release point and retract beneath the base member to return to an initial position. A movement unit provides a cyclic looping movement of the conveyer member into and out of the housing for transporting cards. A feed unit positioned at the dispensing point of the cards can grasp and release the cards from the card dispensing apparatus.
Abstract:
An exemplary apparatus herein includes a registration item positioned at the end of a shelf. Further, tamper elements contact the sides of sheets of media on the shelf to align them and push them toward the registration item. In addition, a frame element is connected to each of the tamper elements and a biased member is connected to the frame element. A motor is connected to the biased member. Rotation of the motor moves the tamper elements in a closed curve path motion relative to the shelf and the registration item. With increasing speed of the rotation of the motor, the biased member expands, and this increases the distance of the closed curve path motion and increases the force applied by the tamper elements against the sheets of media being moved toward the registration item along the shelf.
Abstract:
An exemplary apparatus herein includes a registration item positioned at the end of a shelf. Further, tamper elements contact the sides of sheets of media on the shelf to align them and push them toward the registration item. In addition, a frame element is connected to each of the tamper elements and a biased member is connected to the frame element. A motor is connected to the biased member. Rotation of the motor moves the tamper elements in a closed curve path motion relative to the shelf and the registration item. With increasing speed of the rotation of the motor, the biased member expands, and this increases the distance of the closed curve path motion and increases the force applied by the tamper elements against the sheets of media being moved toward the registration item along the shelf.
Abstract:
An imaging apparatus includes a door configured to be openable and closable with respect to a housing and to support a sheet, an extender configured to be stored in the door and to support a sheet, and a mechanism configured to rotate the extender in conjunction with opening and closing the door. The extender rotates and protrudes from the door when the door is opened, and the extender rotates and is stored in the door when the door is closed.
Abstract:
A transported material transporting device including: a power transmission switching mechanism configured to switch the transmission of the power between the nip-release switching mechanism and the drive motor between a transmitted state and a blocked state; a detection unit provided in the reversing path and configured to detect the presence or absence of the material to be transported which enters the reversing path; and a blocked-state locking mechanism configured to lock the blocked state of the power transmission switching mechanism when the discharging roller is in the released state, wherein the locked state of the blocked-state locking mechanism is released and the power transmission switching mechanism is switched from the blocked state to the transmitted state upon detection of the position of the trailing end of the material to be transported entering the reversing path by the detection unit.
Abstract:
A drive switching mechanism includes a transmission gear and a planetary gear configured to transmit a drive from an input gear to an output gear. The drive switching mechanism further includes a swinging member configured to hold the planetary gear such that the planetary gear can swing around the input gear, a retaining unit configured to retain the swinging member in a swing enabled or disabled state, and a releasing unit configured to disengage the planetary gear from the output gear and cause them to be spaced apart. The output gear includes a toothless part that does not engage with a gear section engaging with the transmission gear.
Abstract:
A paper-stopped linkage mechanism, located at the upper cover of the office machine, includes a paper feeder mechanism, a paper stopper mechanism and a linkage. The paper feeder mechanism is movably located at the upper cover and has at least one paper-feeding roller. The paper stopper mechanism is movably located at the upper cover. The linkage is swingingly pivoted with the upper cover. The linkage has a first linking portion and a second linking portion. The first linking portion and the second linking portion are respectively connected with the paper feeder mechanism and the paper stopper mechanism. The paper feeder mechanism and the paper stopper mechanism are linked by the linkage and move in the opposite directions. Both the paper feeder mechanism and the paper stopper mechanism are located at the upper cover and are linked by the linkage so that the paper stopper mechanism can be driven immediately.
Abstract:
A sheet feeding apparatus and an image forming apparatus capable of ensuring reliability of meshing of gears at low cost are provided.When a sheet feeding cassette is mounted to a printer body, a lifter gear provided to a lifter shaft of a lifter plate which lifts a sheet supporting plate is engaged with a first lifter idler gear, and the lifter gear is rotated by rotations of the first lifter idler gear by a drive of a lifter motor, and thereby the sheet supporting plate is lifted. And, displacement of the lifter gear is restricted by a load applied to the lifter gear by a restriction portion provided with an auxiliary support shaft which is provided to an opening portion formed in the lifter gear and the sheet feeding cassette to enter the opening portion when lifting the sheet supporting plate.