摘要:
The invention relates to a feedstock for reduction in an electrolytic cell, for example a non-metallic feedstock that can be reduced to metal on a commercial scale. The feedstock comprises a plurality of three-dimensional elements which are shaped such that a volume of the feedstock has between 35% and 90% free space (not including any microscopic porosity of the elements). The elements are also shaped as randomly-packable elements to minimise any settling, ordering or alignment of the feedstock, which would otherwise hinder or prevent fluid flow and/or current flow through the feedstock.
摘要:
The present invention pertains to a method for removing a substance (X) from a solid metal or semi-metal compound (M1X) by electrolysis in a melt of M2Y, which comprises conducting the electrolysis under conditions such that reaction of X rather than M2 deposition occurs at a electrode surface, and that X dissolves in the electrolyte M2Y. The substance X is either removed from the surface (i.e., M1X) or by means of diffusion extracted from the case material. The temperature of the fused salt is chosen below the melting temperature of the metal M1. The potential is chosen below the decomposition potential of the electrolyte.
摘要:
A method for preparing an article of a base metal alloyed with an alloying element includes the steps of preparing a compound mixture by the steps of providing a chemically reducible nonmetallic base-metal precursor compound of a base metal, providing a chemically reducible nonmetallic alloying-element precursor compound of an alloying element, and thereafter mixing the base-metal precursor compound and the alloying-element precursor compound to form a compound mixture. The compound mixture is thereafter reduced to a metallic alloy, without melting the metallic alloy. The step of preparing or the step of chemically reducing includes the step of adding an other additive constituent. The metallic alloy is thereafter consolidated to produce a consolidated metallic article, without melting the metallic alloy and without melting the consolidated metallic article.
摘要:
A method of producing titanium metal from a titanium-containing material includes the steps of producing a solution of M″TiF6 from the titanium-containing material, selectively precipitating M′2TiF6 from the solution by the addition of (M′)aXb and using the selectively precipitated M′2TiF6 to produce titanium. M″ is a cation of the type which forms a hexafluorotitanate, M′ is selected from ammonium and the alkali metal cations, X is an anion selected from halide, sulphate, nitrite, acetate and nitrate and a and b are 1 or 2.
摘要翻译:从含钛材料制造钛金属的方法包括以下步骤:从含钛材料制备M''TiF 6 S 6的溶液,选择性地沉淀M'2 SUB 通过加入(M')aXb并使用选择性沉淀的M'2 TiF 6从溶液中制备TiF 6 Ti以制备钛。 M“是形成六氟钛酸盐的阳离子,M'选自铵和碱金属阳离子,X是选自卤化物,硫酸盐,亚硝酸盐,乙酸盐和硝酸盐的阴离子,a和b是1或2。
摘要:
A metallic alloy is prepared from a gaseous mixture of at least two non-oxide precursor compounds, wherein the non-oxide precursor compounds collectively comprise the metallic constituents. The mixture of the non-oxide precursor compounds is oxidized to form a solid mixed metallic oxide. The solid mixed metallic oxide is chemically reduced to produce the metallic alloy.
摘要:
A method of producing a metal or an alloy from metalliferous material by removing O,S, or N from a solid body of metalliferous material by electrolysis in an electrolytic cell is disclosed. The cell includes a molten halide salt or mixture of halide salts as an electrolyte. The cation of the salt is selected from the group that includes Ca, Ba, Li, Na, K, Mg, Sr, Cs and Y. In one aspect of the invention the method includes conducting the electrolysis under conditions wherein the solid body of metalliferous material is made part of a cathode of the electrolytic cell, the cathode includes a conductor for electrically connecting the cathode with an electrical potential, the conductor has high resistance to chemical attack by the electrolyte at high temperatures, and the conductor is at least partly immersed in the electrolyte. In another aspect of the invention the method includes conducting the electrolysis under conditions wherein the potential applied between an anode and the cathode of the electrolytic cell is chosen such that permanent decomposition of the electrolyte is avoided to an extent that substantial deposition of the electrolyte cation at the cathode is avoided and anode material transport towards and into the cathode is substantially prevented. A cathode for use in the method is also disclosed, which cathode includes a body of metalliferous material distributed around one or more electrical conductors that are substantially inert in the electrolyte at high temperatures and which provide a plurality of reduction zones at the cathode.
摘要:
A method for the manufacture of a foamed metal or alloy article including the steps of: A) selecting a particulate feedstock having suitable proportions of a metal element or combination of metal elements M1 contaminated by one or more contaminants X to form an alloy suitable for the foamed article; B) mixing the feedstock with a binder to form a slurry; C) preforming the slurry into a near net shape of the desired article and drying the preform to remove the binder; D) sintering the dried preform to provide a bonded foamed article; E) introducing the sintered article into an electrochemical cell, the cell containing a liquid electrolyte comprising a fused salt or mixture of salts generally designated as M2Y in which contaminant(s) X is soluble, and a relatively inert anode; F) conducting electrolysis under conditions favourable to the selective dissolution of the contaminant(s) X in preference to the M2 cation; and G) following electrolysis reclaiming the purified foam article from the cathode.
摘要:
A method for the production of a master alloy including the steps of; introducing mixed ores comprising the metals of the alloy; introducing the mixed ores into an electrochemical cell, the cell containing a liquid electrolyte comprising a fused salt or mixture of salts generally designated as M2Y in which contaminants X contained in the mixed ores are soluble, and a relatively inert anode; conducting electrolysis under conditions favourable to the selective dissolution of contaminants contained in the mixed ores in preference to the deposition of the M2 cation; and following electrolysis, reclaiming the purified mixed ore form the cathode.
摘要:
The present invention relates to a process for obtaining metals from oxides using shuttle alloys, particularly titanium metal from titanium dioxide in the form of illmenite rutile. The process can be adapted to obtain elemental metal or alloys of metals such as zirconium, chronium, molybdenum, tungsten, tantalum, lithium, cobalt and zinc. The process of the present invention comprises two stages, a first stage in which a metal oxide is reduced in the presence of primary shuttle material, which forms a shuttle alloy with the reduced metals, and a second stage wherein the reduced metal is separated from the shuttle alloy as a metal or alloy. Typically the primary shuttle material comprises bismuth or antimony or a mixture of the two and optionally lead. The reduction reaction may be carried out by chemical means or electrochemical means or by a combination of the two. The process permits the two stages to be linked and the process run continuously such that energy recovered from the second stage may be transferred to the first stage and used to drive the reduction of the metal oxide or other reactions, such as the decarbonization of calcium carbonate used as a melting agent. The addition of material such as silica to the process, may facilitate recovery of by-products such as aluminous cements.
摘要:
A method and apparatus for producing a high-melting-point and high-toughness metal, comprising: reducing a high-melting point and high-toughness metal chloride with an activated metal to form a high-melting-point and high-toughness sponge metal in a reducing vessel arranged sideways relative to a condensing vessel, wherein the condensing vessel is integrally connected to the reducing vessel through a conduit, and at least one of the reducing vessel and/or the condensing vessel is supported so as to move with thermal expansion of said conduit; and measuring a weight-change of the vessel supported so as to move with thermal expansion of the conduit to estimate the degree of progress of a separating and recovering process on the basis of the detected weight-change when nonreacted activated metal and its chloride remaining in the sponge metal formed in the reducing vessel are recovered into the condensing vessel by vacuum separation.