Abstract:
A system and method of in situ verification of operational status of control components in a redundant flow control system is provided. The flow control system includes a primary electro-hydraulic servo valve (EHSV) and a secondary EHSV. Only the primary EHSV includes a position sensor. The redundant EHSVs are coupled via a transfer valve to control a position of a metering valve supplying fluid flow to at least one downstream system. The downstream system may be, e.g., a combustor, an actuator, an end effector, or a combination thereof.
Abstract:
A valve for regulating the temperature of an oil flow, includes a first inlet channel, a second inlet channel and an outlet channel, the second inlet channel and the outlet channel being capable of cooperating with a temperature regulator. One of the inlet channels includes an oil flow regulator controlled by a computer by generation of an electrical set value respecting a control law configured within the computer, the control law being slaved by an oil flow temperature sensor, the electrical set value controlling opening and closing of the regulator, the regulation law generating an alternation of open and closed states of the flow regulator so as to achieve a required average temperature of the oil flow over a given period.
Abstract:
A control system is provided for a power generating system having a gas turbine, a flue gas exhaust stage and a blow-off valve assembly. The gas turbine includes a compression stage, a combustion stage and a driveshaft. The blow-off valve assembly is configured to selectively provide fluid communication between the combustion stage and the flue gas exhaust stage. The control system includes a controller configured to output a signal causing the blow-off valve assembly to provide the fluid communication in response to a sudden de-loading of the gas turbine.
Abstract:
The subject matter of this specification can be embodied in, among other things, an engine assembly having a nacelle surrounding an engine, and a thrust reverser coupled to the nacelle and having a thrust-reversing element movable relative to the nacelle between a stowed and deployed position, a first hydraulic actuator configured to move the thrust-reversing element between the stowed position and deployed position, the first hydraulic actuator being connected to a fluid source and a return reservoir, and a second hydraulic actuator configured to move the thrust-reversing element between the stowed and deployed position, the second hydraulic actuator being connected to the fluid source and the return reservoir, and a control system having an electrohydraulic servo valve operable to selectively route fluid between the fluid source, the second hydraulic actuator, and the return reservoir, and a controller configured to operate the electrohydraulic servo valve.
Abstract:
A steam valve includes: a valve main body which has, on the inside thereof, a flow path through which steam flows, and has a valve seat formed in a portion of the flow path; a valve body which comes into contact with the valve seat, thereby shutting off the flow path, and is separated from the valve seat, thereby opening the flow path; a valve shaft which is connected to the valve body, extends in an upward direction from the valve body, and moves up and down, thereby bringing the valve body into contact with the valve seat and separating the valve body from the valve seat; a hydraulic drive unit which is disposed to be separated in a horizontal direction from the valve main body, at a position which does not overlap the valve main body in a case of being viewed from above, and has a drive rod which is driven forward and backward by oil pressure; a first link unit which connects the drive rod and the valve shaft and transmits the forward and backward drive of the drive rod to the valve shaft, thereby moving the valve shaft up and down; a second link unit connected to the valve main body; and a connection unit which connects the second link unit and the first link unit and transmits a movement of the valve main body in the horizontal direction to the first link unit through the second link unit.
Abstract:
A valve for regulating the temperature of an oil flow, includes a first inlet channel, a second inlet channel and an outlet channel, the second inlet channel and the outlet channel being capable of cooperating with a temperature regulator. One of the inlet channels includes an oil flow regulator controlled by a computer by generation of an electrical set value respecting a control law configured within the computer, the control law being slaved by an oil flow temperature sensor, the electrical set value controlling opening and closing of the regulator, the regulation law generating an alternation of open and closed states of the flow regulator so as to achieve a required average temperature of the oil flow over a given period.
Abstract:
An apparatus for controlling an aeroplane gas turbine engine has various sensors and devices for operating the engine, and two control channels each calculating a command value for controlling operation of the engine based on signals outputted from the sensors. In each of the control channels, it is determined whether any of the sensors and devices is abnormal based on the signals to determine a failure level of the control channel concerned with a numerical value. The failure level is compared with that of the other control channel and based thereon, the command value calculated by the control channel of smaller failure level is sent to the devices. With this, even when both control channels are failed, the engine control can be continued with taking the failure level into account.
Abstract:
A pressure regulator comprises a housing, a metering spool movable within the housing to control the degree of opening of a metering orifice of the regulator, a first inlet through which hydraulic fluid at high pressure is supplied to said metering orifice, a first pressure chamber within the housing and containing hydraulic fluid at a reference pressure (Pref) to which one end of said metering spool is exposed, compression spring means within said first pressure chamber and acting at one end against said one end of said metering spool, an outlet from the housing downstream of said metering orifice, for hydraulic fluid at regulated pressure (Preg) from said metering orifice, a second pressure chamber containing hydraulic fluid at said regulated pressure Preg to which the opposite end of said metering spool is exposed, such that the metering position of the metering spool relative to the housing is a position of equilibrium between the force of the spring and Pref acting on one end of said metering spool and Preg acting on the other end of the metering spool, said equilibrium position changing to maintain a predetermined pressure difference (Pdiff) between Pref and Preg, and the regulator further including an abutment against which the opposite end of said compression spring means reacts and a third pressure chamber containing hydraulic fluid at a control pressure (Pcon) acting on said abutment, whereby the value of Pcon, can be changed to adjust the position of said abutment relative to the housing of the regulator to change the pre-load of said compression spring means thereby to adjust the value of Pdiff.
Abstract:
Control apparatus for programmed control of a plurality of gas turbine engine compressor air bleed valves in response to a plurality of control input signals representing engine operating conditions including variable conditions related to engine power output. The control inputs are sensed and/or computed and scheduled to provide accurate and reliable control over a plurality of compressor air bleed valves by means including a hydraulic programmer with a three dimensional compressor rise scheduling cam and adjustable hydraulic timers.
Abstract:
A variable mechanical automotive coolant pump includes a rotatable rotor shaft, an impeller wheel which is co-rotatably connected with the rotor shaft, a static guiding cylinder, a control sleeve, and at least one guiding device. The impeller wheel has a discharging radial outside. The control sleeve has a hollow-cylindrical control sleeve body having a radial outside. The control sleeve does not rotate and is guided axially slidable within the static guiding cylinder so as to regulate a flow rate of the variable mechanical automotive coolant pump by closing or opening the discharging radial outside of the impeller wheel. The at least one guiding device guides the radial outside of the control sleeve within the static guiding cylinder.