Abstract:
Disclosed is a space cold gas thruster operating with a solid propellant. The cold gas thruster includes a tank suitable for containing a solid propellant and a tank heating device suitable for sublimating the solid propellant and forming gaseous propellant, the tank having an aperture for transferring the gaseous propellant outside the tank, such as a nozzle. Also disclosed is a process for determining the amount of remaining propellant in the propellant tank of the disclosed cold gas thruster.
Abstract:
The disclosure concerns a wire seal for sealing a gap between two components of a gas turbine, the wire seal including a first core and a second core spaced apart from one another, a wire pack extending around the first core and the second core, and a fastener for securing the wire pack to the first core and the second core, wherein the wire seal is curved. Various embodiments are disclosed, including various types of fastener. A method of manufacturing a wire seal is also disclosed.
Abstract:
A mounting set for use in mounting an external stores to a mounting station of an aerospace vehicle includes a mounting bracket arrangement and a strap arrangement. The bracket arrangement is configured for selective reversible engagement with respect to the mounting station and for cooperating with the strap arrangement. The strap arrangement is configured for securing the bracket arrangement to the stores in load bearing abutment therewith to enable transfer of loads between the stores and the mounting station via said bracket arrangement, in operation of said mounting set. A mounting system is also provided for mounting an external stores to an aerospace vehicle having two or more mounting stations, including a mounting set for each mounting station. Mounting methods are also provided.
Abstract:
A thruster designed to produce thrust by introducing a propellant to a catalyst layer from a propellant valve via a propellant introduction member and spurting out a gas resulting from decomposition of the propellant occurring on the catalyst layer, wherein the thruster comprises a chamber of an Ni alloy for holding the catalyst layer inside, the propellant introduction member is made of an Ni alloy and connects the propellant valve and the chamber, and a propellant valve flange of a Ti alloy with a plurality of columns of a Ti alloy is arranged between the chamber and the propellant valve to support the chamber by the columns.
Abstract:
Disclosed is a propulsion system having a structural configuration that provides easy and convenient access to the interior regions of a liquid fuel tank and a hybrid rocket motor case. In one embodiment, the propulsion system comprises: a hybrid rocket motor case and a fuel tank coupled to the hybrid motor case. The motor case is configured to hold solid rocket fuel and the fuel tank defines an internal volume configured to hold a fluid oxidizer. A bulkhead is interposed between the motor case and the fuel tank, wherein at least one access passageway extends through the bulkhead. The access passageway provides exterior access to the interior volume of the motor case or the internal volume of the storage tank while the hybrid rocket motor is coupled to the fuel tank.
Abstract:
Method and arrangement for providing a component (1) for being subjected to high thermal load during operation. The component includes a wall structure, which defines an inner space for gas flow. The component is formed by at least a first part (5) that includes an inner wall (8), an outer wall (9) and at least one cooling channel (11) between the walls. An end portion of said inner wall of the first part of the component is joined to a second part (6). The joint (18) is located at a distance from the interior of the component.
Abstract:
A case-burning rocket booster includes a combustible case containing a solid rocket fuel, a combustion chamber adjustably coupled to the case for burning the case and the solid rocket fuel, a nozzle connected to the combustion chamber for expelling the burned case and fuel to generate thrust, and a drive system for pulling the combustion chamber and nozzle up the case as the case and fuel burn. A hybrid version of the case-burning rocket also includes an oxygen supply system for supplying varying amounts of oxygen to the combustion chamber to vary the thrust generated by burning the case and the fuel.
Abstract:
A solid fuel propellant motor casing is described, the casing comprising a body portion for containing the propellant, the body portion also including at least one detachable end closure portion, the closure portion being maintained in position relative to said body portion by retaining means, the retaining means being held in position with engagement means on an inner surface of said body portion and located radially with respect to said body portion by locating means against resilient biasing means, said locating means being responsive to temperature such that said locating means melt at a predetermined temperature allowing said resiliently biased retaining means to move radially inwardly of said body portion and allow said at least one closure portion to be ejected from the casing.
Abstract:
A method and a system of assembling a launch vehicle vertically on an aboveground platform are presented in the present invention. The method of the present invention enables a rapid assembly of the launch vehicle; thus substantially reducing the final cost of the launch vehicle. The system of the present invention includes a plurality of specially designed tools that enable the rapid assembly of the launch vehicle.
Abstract:
A launch vehicle payload housing and assembly joint for a launch vehicle, the housing comprising a shroud having first and second shell sections, and a frusto-conical payload adapter mounted in the shroud. The shell sections are connected together to form a housing. A peripherally extending explosive seam and a pair of longitudinally extending explosive seams hold the shell sections together. Each seam comprises a plurality of seam elements which include a pair of brackets attached to opposed ends of those parts of the shell abutting the longitudinally and peripherally extending seams. The brackets are spaced from one another to define a cavity. The cavity accommodates a deformable tube which houses explosive material in the form of an explosive cord. Detonation of the explosive material causes the shell sections to separate from one another. Longitudinally acting thrustor springs and transverse acting assistor springs urge the shell sections apart to pivot about hinges between the shell sections and a base ring. The hinges comprise brackets which are separable from one another when the shell sections are in their separated open state. This allows the shell sections automatically to be discarded once fully opened. The assembly joint for connecting a shroud and a payload adapter to a final stage motor of a launch vehicle comprises a flange defined by a lower end of a wall of the shroud, an adapter bracket secured to a lower end of the adapter, the adapter bracket defining a flange aligned with the flange of the shroud wall, and a motor bracket secured to an outer wall of the final stage motor. The motor defines a flange aligned with the flange of the adapter bracket. The three flanges define axially extending aligned holes for receiving bolts to secure the flanges to one another.