Abstract:
A gas burner safety system comprises dual sensor arrays, the first array positioned proximal to the gas burner and the second array positioned proximal to a control used to turn on and off and regulate the flame of the gas burner. The first array senses the flame components such that a flame signature is obtained when no object is placed on or above the flame and a flame image is obtained when an object is proximal to the flame. By comparing the flame signature and the flame image, a central control unit operatively connected to the sensor arrays can determine the presence or absence of an object proximal to the flame. The second sensor array is positioned to detect a human hand proximal to the control. In operation, if the flame image matches the flame signature and a human hand is not detected proximal to the control, the central control unit turns off the gas burner by causing the closure of a valve in the gas supply line to the gas burner.
Abstract:
The embodiments of the present application disclose a dual sensor combustion system. The dual sensor combustion system comprises: a combustor; a stepless speed regulating fan that supplies air for the combustor; a fuel gas conduit that is in communication with the combustor; a proportional valve provided on the fuel gas conduit; a control unit electrically connected to the stepless speed regulating fan and the proportional valve; a first pressure sensor assembly that detects a first pressure signal of the gas flow passage; a second pressure sensor assembly that detects a second pressure signal of the fuel gas conduit; a storage that stores a correspondence relationship between a first target pressure signal of the gas flow passage and a second target pressure signal of the fuel gas conduit; and the control unit controlling at least one of the stepless speed regulating fan and the proportional valve based on the first pressure signal, the second pressure signal and the correspondence relationship.
Abstract:
A system for detecting an at-fault combustor includes a sensor that is configured to sense combustion dynamics pressure data from the combustor and a computing device that is in electronic communication with the sensor and configured to receive the combustion dynamics pressure data from the sensor. The computing device is programmed to convert the combustion dynamics pressure data into a frequency spectrum, segment the frequency spectrum into a plurality of frequency intervals, extract a feature from the frequency spectrum, generate feature values for the feature within a corresponding frequency interval over a period of time, and to store the feature values to generate a historical database. The computing device is further programmed to execute a machine learning algorithm using the historical database of the feature values to train the computing device to recognize feature behavior that is indicative of an at-fault combustor.
Abstract:
A modulating furnace having a variable rate burner and a controller is operated at a first burner firing rate for a first period of time, and a higher burner firing rate once the first period of time has expired. In some instances, the burner may be operated only while the controller is receiving a call for heat from a thermostat or the like.
Abstract:
A flame detecting device indicates the presence or absence of a flame. The detecting device includes both an IR detector for sensing the IR frequencies of the flame and a UV detector for sensing the UV intensity of the flame. Information is stored defining IR frequency and UV intensity standards. A microcomputer is operatively connected to the IR and UV detectors and compares the two detector outputs to the two respective standards in accordance with a program establishing defined conditions in terms of IR frequency and/or UV intensity that must be met for a flame present or flame absent signal to be rendered on a bar graph display.
Abstract:
Provided is a controller for use with a gas turbine engine, which ensures a stable combustion regardless of the deterioration of the catalyst and elevated characteristics of the exhaust gas. The controller 6 is used in the engine which comprises a combustor 2 for combusting a mixture of compressed air from a compressor 1 and a fuel under the existence of catalyst, the combustor having a catalytic combustion unit 21 bearing the catalyst and a pre-burner 7 provided on an upstream side of the catalytic combustion unit with respect to a flow of the compressed air for supplying and combusting a pre-heating fuel PF with the compressed air CA. The controller comprises a memory 6c for memorizing an initial temperature difference D between inlet and outlet temperatures t1, t2 measured at inlet and outlet of the catalytic combustion unit with non-deteriorated catalyst accommodated therein, and a pre-burner control for calculating a present temperature difference between the inlet and outlet temperatures measured in an operation of the gas turbine engine and controlling an amount of the fuel to be supplied to the pre-burner according to a deterioration Δd of the catalyst which is provided by a difference between the initial and present temperature differences D and d.
Abstract:
A modulating furnace having a variable rate burner and a controller is operated at a first burner firing rate for a first period of time, and a higher burner firing rate once the first period of time has expired. In some instances, the burner may be operated only while the controller is receiving a call for heat from a thermostat or the like.
Abstract:
Before start-up of a burner, minimum and maximum actuating positions of an actuating drive are set by setting elements. During control of the actuating drive, an automatic firing mechanism receives from a position transducer position signals dependent on the actuating position of the actuating drive reached during operation. The automatic firing mechanism assigns to the minimum actuating position the position signal measured during the feedback of the minimum actuating position of the actuating drive, and assigns to the maximum actuating position of the actuating drive the position signal measured during the feedback of the maximum actuating position of the actuating drive. Using the position signals assigned to the minimum and maximum actuating positions, corresponding control parameters are determined for activating the minimum and maximum actuating positions, and the control parameters are stored.
Abstract:
A modulating furnace having a variable rate burner and a controller is operated at a first burner firing rate for a first period of time, and a higher burner firing rate once the first period of time has expired. In some instances, the burner may be operated only while the controller is receiving a call for heat from a thermostat or the like.
Abstract:
A back drafting alarm assembly is designed to detect back drafting in combustion fired appliances. The assembly includes a temperature sensor unit that is attached to the diverter bonnet of a water heater or furnace to measure the temperature at all times. The sensor is connected to an alarm assembly that sounds an alarm when the temperature of the bonnet reaches or exceeds 130 degrees F. for a predetermined time period. The preferred time period is three (3) minutes. The alarm assembly also includes a reset button to shut off the alarm and a test button to make certain that the device functions when installed. A microprocessor provides the additional capability to record the total number of excursion events over a longer monitoring period. The alarm operates on direct current from a battery, or standard 110 volts AC with a suitable AC/DC transformer. A battery backup feature provides uninterrupted power when using 110 volts AC as a power source. Back drafting is undesirable due to entry of carbon monoxide, produced by combustion, into the dwelling, resulting in dangerous or deadly conditions within the dwelling.