Abstract:
The invention relates to firearm projectiles, primarily for destroying underwater targets in the case of underwater or air-to-water fire. A cavitation core of a firearm projectile results in an increase in target destruction efficiency by virtue of approximating the contour (R) of the cavitation core to the contour of the cavity (W) in the water, increasing the mass of the core and allowing loss of cavitation stability and rolling in a non-uniform (heterogeneous) and compressible water-containing medium.
Abstract:
A flechette for use with a gun barrel having a tapered bore with a diameter at the initial bore section greater than the diameter at the emergent bore. The flechette includes a body constructed of a ductile material and having an elongated axis aligned with the axis of the tapered bore when positioned in the load end of the bore. The body also includes a cylindrical bulkhead as well as a bourrelet that are axially spaced from each other along the flechette and have an outside diameter substantially the same as the diameter at the initial bore section of the tapered bore. An elongated boom is attached at the tail end of the body while a penetrator is attached at the forward end of the body. Upon launch, both the bulkhead and bourrelet are compressed radially inward by the bore reduction so that the body is substantially cylindrical upon exit from the discharge end of the bore.
Abstract:
A penetrator includes a fore body comprising a pin and having a center of aerodynamic pressure forward of a center of gravity and a stabilizing portion comprising a material of lower density than that of the fore body and a plurality of outwardly extending fins for improving an aerodynamic stability of the projectile and defining a bore in which the pin is received for removably attaching the fore body thereto such that, when attached to the fore body, a center of gravity for the penetrator is forward of a center of aerodynamic pressure for the penetrator.
Abstract:
The invention relates in particular to hunting ammunition for a fire-arm of the kind having a subcaliber bullet fitted with a feathering, the subcaliber bullet allowing for destabilization on its trajectory beyond a distance travelled outside of the fire-arm.
Abstract:
An explosive flechette launching system which includes a central core expive driver having stacked coaxially thereabout a plurality of disc plates which have layered and sandwiched therebetween for radial launching a multiplicity of flechettes. In one embodiment, the flechettes are oriented and pointed in a radial direction and each are provided with divergent tail piece which is releasably fitted into a mating recess in a driver piston abutting said explosive driver. The fin assembly is provided with a central bore and is slidably carried by the flechette body so that when disposed in said launching system, the fin assembly is positioned at the pointed end thereof and supported by wedge supports along the fins and intermediate the disc plates. The entire assembly is protectively encapsulated or covered with a thin membrane or skin. The explosive driver is designed to provide or generate a radial plane, high pressure wave for launching the flechettes. In the other embodiment the flechettes are oriented, between the plates, transverse to the direction of flight or side launch to provide a relatively large surface area against which the explosive energy can act.
Abstract:
A projectile and stabilizer therefor are provided. The sliding stabilizer is used instead of fixed or glued tail feathers, vanes or other fletching as a means for stabilizing projectile flight. The invention improves current projectile technology with reduced assembly labor cost, the elimination of bow clearance issues, improved accuracy with the consistent production of the sliding stabilizer, easy replacement of the stabilizer in the field, and improved projectile storage. A sliding stabilizer is designed to slide along the shaft of a projectile and comprises a circumferentially extending wing and a plurality of fins. In use, the stabilizer is positioned at the front of the projectile prior to launch, and the projectile slides quickly through the stabilizer until secured at a stop position at or near the trailing end of the projectile. An annular arrow fletch and arrow stabilizer are also provided. The annular arrow fletch may be used for; stabilizing arrow flight, providing better clearance and functionality then conventional fixed glued tail feathers. A stabilizer may be used with light emitting diode arrow nocks. The stabilizer may improve arrow shaft stabilization technology with reduced assembly labor cost, the elimination of facial and or face mask interference issues providing more clearance, improved accuracy, repeatable production with the consistent injection mold production of the annular arrow fletch, easy replacement of the annular arrow fletch in the field, and improved arrow storage. An annular arrow fletch may incorporate a metallic contact point, which will work with all light emitting nocks. A design of an annular arrow fletch may be affixed to an arrow by an arrow nock and may comprise an annular wing, a central elongated cylindrical cylinder with a cap and a plurality of fins with micro-groves and a metal contact. In use, the annular arrow fletch is affixed at the aft end of the arrow by an arrow nock prior to launch.
Abstract:
The present invention relates to the improved feathers of an arrow, and more particularly, to the improved feathers of an arrow, which prevent instability of flight caused by a vortex generated during the flight of the arrow by forming a plurality of arrow feathers attached to the arrow, which has a cross section which is a curved surface and integrally forming an auxiliary surface having one surface which is the curved surface with the arrow feather to guarantee stable flight.
Abstract:
The present invention relates to a method for packing fin-stabilized penetrators (8) in a carrier shell (1), which penetrators (8) comprise a front penetrator part (10) and a rear fin part (9, 9′) comprising fin sides (14, 14′), so that the empty space between the penetrators (8) and problems with the penetrators upon the release of the penetrators (8) from the carrier shell (1) are minimized, wherein the penetrators (8) are packed in groups (7) and are joined together to form larger packing units (6), in which each group (7) is arranged with a centrally located penetrator (8) flanked by at least three outer penetrators (8), which outer penetrators (8) are arranged so that their front penetrator parts (10) lie side to side against the fin sides (14, 14′) of the centrally located penetrator (8). The method is characterized in that the rear fin parts (9, 9′) of the penetrators (8) are made shorter than the front penetrator parts (10) of the penetrators (8), and in that the front penetrator parts (10) are made cylindrical for the distribution of load stresses, upon firing of the carrier shell, from the centrally located penetrator (8) rearwards in the direction of firing via the front penetrator parts (10) of the flanking penetrators (8).
Abstract:
A flechette has a forward body (20) containing its center of gravity which is connected to a tail section (24). The tail section has a pair of fins (24A, 24B) each having a preselected longitudinal angle and radial angle. When the two fins are viewed from the aft of the flechette, the pair of fins demonstrate a S-shaped orientation. The size, shape and orientation of the pair of fins provide aerodynamic stability to the flechette while allowing the flechette to be stacked with like-shaped flechettes. The two-piece assembly of the flechette easily accommodates the use of different density materials for the respective pieces.