Abstract:
A cartridge comprising: a toner; a developing roller; a supply member abutting the surface of the developing roller a regulating member regulating the toner carried on the surface of the developing roller, wherein the cartridge comprises a first supply electrode to which a voltage is supplied from outside of the cartridge, the supply member and the regulating member are electrically connected to the same first supply electrode, the toner comprises a compound A having a structure represented by Formula (1) below,
—(CH2CH2O)— (1)
the compound A is eluted in methanol a supernatant comprising the compound A is analyzed by liquid chromatograph ESI/MS, a specific peak of which an average m/z is 300 to 1000 exists.
Abstract:
A white toner according to an embodiment includes: a raw white toner not containing a colloidal silica and containing a white pigment and a crystalline resin; and 1.0 to 1.1 parts by weight of a colloidal silica per 100 parts by weight of the raw white toner. The white toner has a true density of 1.8 to 2.2 g/cm3.
Abstract:
A method for providing a developer mix having tribocharge uniformity across varying temperature and humidity conditions is provided. Tribocharge uniformity is achieved in the developer mix by performing the step of treating the surface of the polymer coated magnetic carrier particles with hydrophobized titania surface additives before the polymer coated magnetic carrier particles are mixed with the toner particles. The surface treatment with the hydrophobized titania surface additives can be either a spherical, disk, or spindle shaped.
Abstract:
A method for providing a developer mix having tribocharge uniformity across varying temperature and humidity conditions is provided. A developer mix used in a dual component development (DCD) system typically is a mixture of toner particles and magnetic carrier particles. Tribocharge uniformity is achieved in the developer mix by performing the step of treating the surface of the magnetic carrier particles with surface additives before the magnetic carrier particles are mixed with the toner particles. Surface additives include but are not limited to silica, titania and alumina.
Abstract:
In accordance with various embodiments of the invention, a method of forming an ultraviolet security toner for use in printing hardware originally designed to use chemically prepared toner includes melt-blending binder resin particles and optionally a charge-control agent, a colorant and a releasing agent. The fluorescent pigment is then admixed to the melt-blended particles to form a fluorescent pre-toner. A first inorganic material is then blended with the fluorescent pre-toner, coating the particles of the fluorescent pre-toner with the first inorganic material. A second inorganic material is then blended with the coated pre-toner, adding another layer of coating to the fluorescent pre-toner. The first inorganic material has an average particle diameter size that is less than the average particle diameter size of the fluorescent pigment particles and the second inorganic material has an average particle diameter size less than that of the first inorganic material.
Abstract:
A method for providing a developer mix having tribocharge uniformity across varying temperature and humidity conditions is provided. A developer mix used in a dual component development (DCD) system typically is a mixture of toner particles and magnetic carrier particles. Tribocharge uniformity is achieved in the developer mix by performing the step of treating the surface of the magnetic carrier particles with surface additives before the magnetic carrier particles are mixed with the toner particles. Surface additives include but are not limited to silica, titania and alumina.
Abstract:
In accordance with various embodiments of the invention, a method of forming an ultraviolet security toner for use in printing hardware originally designed to use chemically prepared toner includes melt-blending binder resin particles and optionally a charge-control agent, a colorant and a releasing agent. The fluorescent pigment is then admixed to the melt-blended particles to form a fluorescent pre-toner. A first inorganic material is then blended with the fluorescent pre-toner, coating the particles of the fluorescent pre-toner with the first inorganic material. A second inorganic material is then blended with the coated pre-toner, adding another layer of coating to the fluorescent pre-toner. The first inorganic material has an average particle diameter size that is less than the average particle diameter size of the fluorescent pigment particles and the second inorganic material has an average particle diameter size less than that of the first inorganic material.
Abstract:
A particulate material production method is provided. The particulate material production method includes ejecting a particulate material composition liquid, which includes an organic solvent and a particulate material composition including at least a resin and dissolved or dispersed in the organic solvent, from at least one nozzle to form droplets of the particulate material composition liquid in a gas phase; and solidifying the droplets of the particulate material composition liquid to prepare particles of the particulate material composition. The droplet solidifying step includes contacting the droplets with a poor solvent for the particulate material composition.
Abstract:
A method for producing a positively chargeable toner, including: step 1: melt-kneading a toner raw material composition containing a resin binder, a positively chargeable charge control agent, and fine fluororesin particles, and a recycled powder; step 2: cooling a melt-kneaded mixture obtained in the step 1, and pulverizing a cooled mixture; and step 3: classifying a pulverized product obtained in the step 2, wherein the resin binder in the toner raw material composition contains 50% by mass or more of a polyester having a softening point of 125° C. or higher and 170° C. or lower. The positively chargeable toner obtainable by the method of the present invention is suitably used in developing latent images formed in, for example, an electrophotographic method, an electrostatic recording method, an electrostatic printing method, or the like.
Abstract:
A toner for electrostatic charge image development includes toner particles and fatty acid metal salt particles. The content of the fatty acid metal salt particles is from 0.2 parts by weight to 5 parts by weight with respect to 100 parts by weight of the toner particles; the weight of fatty acid metal salt particles remaining on a sieve having an opening of 25 μm when the toner is sieved with the sieve having an opening of 25 μm is from 0.015% by weight to 0.300% by weight with respect to the total weight of the toner; and the weight of fatty acid metal salt particles remaining on a sieve having an opening of 45 μm when the toner is sieved with the sieve having an opening of 45 μm is 0.030% by weight or less with respect to the total weight of the toner.