摘要:
There is provided a driver for a spatial light modulator comprising a plurality of pixels. The driver is configured to receive a hologram of a picture and drive the spatial light modulator to display the hologram on a group of pixels of the plurality of pixels. The driver is further configured to apply a series of phase offsets to the spatial light modulator displaying the hologram, wherein each phase offset of the series of phase offsets is applied to each pixel of the group of pixels for a respective predetermined period of time.
摘要:
An identification medium, in which a pattern is clearly altered in observation through a right-handed circularly polarizing filter and observation through a left-handed circularly polarizing filter, is provided. The identification medium is formed by laminating a cholesteric liquid crystal layer, a λ/4 plate, and a linearly polarizing filter layer, in that order, from an observing side. The cholesteric liquid crystal layer is formed with a hologram and selectively reflects light. In an observation through a circularly polarizing filter that transmits the light reflected at the cholesteric liquid crystal layer, light reflected at a pattern printed layer is not perceived due to the function of a circularly polarizing layer. Images are clearly altered by switching a right-handed and a left-handed circularly polarizing filter.
摘要:
An identification medium is provided in which latent image having plural colors can be observed even when the identification medium is spaced away from a polarization filter. A cholesteric liquid crystal layer is provided as a specific polarization light reflection layer which reflects light having a specific polarized condition. An optical anisotropic layer having an optical anisotropy is provided at an upper position overlapping with the specific polarization light reflection layer. An image A fanned by an area having an optical anisotropy different from that of surroundings is formed at the optical anisotropic layer. When the identification medium is directly viewed, the influence of the optical anisotropy cannot be seen. When the identification medium is observed via a circular polarization filter, the image can be seen to have a specific color by the influence of the optical anisotropy.
摘要:
An identification medium is to be observed via a linearly polarizing filter and includes a first liquid crystal layer that changes the wavelength of light according to the rotational angle of the linearly polarizing filter, a cholesteric liquid crystal layer, and a light absorbing layer that is provided below the cholesteric liquid crystal layer.
摘要:
A multilayer body (1) having an optically active first layer system (10) is described, in which case the first layer system (10) is an optically variable device (OVD), and the optical effect of the first layer system (10) can be influenced by an electrically controllable second layer system (20).
摘要:
A method of fabricating an optical element including a liquid crystal layer having a spatially-varying tilt angle includes coating a substrate with a linearly photopolymerizable polymer layer, irradiating the linearly photopolymerizable polymer layer with linearly polarized ultra-violet light at a oblique angle, and coating a layer of liquid crystal material on a surface of the irradiated linearly photopolymerizable polymer layer. The liquid crystal material has a predetermined relationship between its tilt angle and a total dose of the linearly polarized ultra-violet light. The linearly photopolymerizable polymer layer is irradiated with at least one dose of linearly polarized ultra-violet light that is sufficient to induce formation of a plurality of discrete regions within the liquid crystal layer having a larger in-plane birefringence than an adjacent or surrounding region.
摘要:
A thermosensitive ink layer 102 is composed of a thermochromic material which changes from black to a transparent state and is formed on a substrate 101 made from a PET film by heating. A cholesteric liquid crystal layer 103 on which a hologram 105 of an appropriate form is formed on the cholesteric liquid crystal layer is mounted thereon. At ordinary temperature, the thermosensitive ink layer 102 exhibits a property of light absorption and a property of selective reflection and a color shifting of the cholesteric liquid crystal layer 103 are observed. The thermosensitive ink layer 102 becomes transparent by heating and the figure 104 on the substrate 101 is also visible. The determination of the authenticity thereof is performed by utilizing the change of view. Therefore, the anticounterfeiting effects are superior to those of the discrimination techniques using conventional techniques, and this enables articles to be distinguished easily and reliably.
摘要:
The invention relates to an authentication medium capable of eliminating problems with the formation of an authentication portion with and embossed hologram, for instance, difficulty with which fabrication time is cut down, and difficulty with which an authentication pattern is changed due to an increased step counts at the time of embossing mold fabrication. A thin-film layer (2) made up of a material that changes in transmittance of reflectance upon heating, an orientation film (4) that is provided if necessary, and a color change layer (3) such a light selective reflecting layer comprising a cholesteric liquid crystal layer are stacked on a substrate (12). By means of a thermal head or the like, recording is applied to the thin-film layer (2), and changes in the hue of the light selective reflecting layer (3) at a recorded site or the presence or absence of reflection or hues upon observation by way of a circular polarization sheet are observed, thereby solving the above problems.
摘要:
Described herein is a new holographic polymer dispersed liquid crystal (HPDLC) medium with broadband reflective properties, and a new technique for fabrication of broadband HPDLC mediums. The new technique involves dynamic variation of the holography setup during HPDLC formation, enabling the broadening of the HPDLC medium's wavelength response. Dynamic variation of the holography setup may include the rotation and/or translation of one or more motorized stages, allowing for time and spatial, or angular, multiplexing through variation of the incident angles of one or more laser beams on a pre-polymer mixture during manufacture. An HPDLC medium manufactured using these techniques exhibits improved optical response by reflecting a broadband spectrum of wavelengths. A new broadband holographic polymer dispersed liquid crystal thin film polymeric mirror stack with electrically-switchable beam steering capability is disclosed.
摘要:
Described herein are the materials, mechanisms and procedures for optimizing various performance parameters of HPDLC optical devices in order to meet differing performance requirements. These optimization tailoring techniques include control and independent optimization of switchable HPDLC optical devices to meet the demanding requirements of anticipated applications for, inter alia, the telecommunications and display industries. These techniques include optimization of diffraction efficiency, i.e., index modulation, polarization dependence control, haze, cosmetic quality, control of response and relaxation time, voltage driving for on and off switching, and material uniformity. This control and independent optimization tailors properties of switchable HPDLC optical devices according to the specific requirements of the application of the switchable HPDLC optical device. The invention disclosed herein retains the desirable attributes of the multi-functional acrylate system for forming HPDLC optical devices, but adds new materials to the acrylate system and/or new process control to the recording to optimize performance parameters as may be needed for specific applications. This results in high optical quality switchable holograms with good diffraction efficiency and low, stable switching voltage.