摘要:
The described technology is directed towards sharing asynchronous (async) tasks between task chains, including in a way that prevents cancellation of lower-level chain entity from cancelling a shared async task. A shared async task is wrapped in multiplexer code that maintains lower-level entity identities as a set of listeners of the shared async task, and when a listener cancels, only removes that listener from the set of listeners so that the shared async task does not cancel as long as one listener remains in the set. Also described is optimization to share an async task, and wrapping tasks in cancel-checking code that prevents the task from running its work if the task is intended to be cancelled but is queued to run before the cancel request is queued to run.
摘要:
A method of machine control can include providing at least a system master signal, selectively synchronizing at least sub-system master signal to the system master signal based on the value of the system master signal, and carrying out at least one operation based on the value of the other master signal. For example, a machine controller may provide a system virtual master signal and synchronize one or more module virtual master signals to the system virtual master based on the system virtual master count value. One or more components of the module may operate based on the count value of the module virtual master signal. The use of an asynchronous control method may advantageously increase the flexibility of the machine. Because the operation of the components of the machine may depend on respective virtual master signals, a machine using asynchronous control methods may advantageously continue operating one component or module in the event of a fault involving other components. Additionally, component operation can be redefined while other components of the machine continue to run.
摘要:
A slot calculation unit calculates a current slot number and stores it in a slot storage unit. When each of control tasks of a recognition processing portion, a vehicle speed calculation portion, a brake control portion, and a steering control portion is activated, a slot number at the time of output of an execution result used as input data is obtained from a task table storage unit, and it is determined whether a time constraint is violated based on a permissible slot number for the input data, stored in a constraint table storage unit. When an execution result of each control task is output, the stored current slot number is read, and it is determined whether a time constraint is violated based on a permissible slot number for the output of the execution result, stored in the constraint table storage unit.
摘要:
Provided are a method, a test system and a microcontroller (40), for use in a test system for testing vehicles and automotive components. Control signals that are generated by active components within a vehicle during a test drive are sampled and played back to a specimen vehicle within a laboratory test environment, and the control signals are played back synchronously with data representing conditions and events such as loads, acceleration and displacements that are experienced during the test drive. A microcontroller (40) is provided to buffer control signal data and to synchronize playback of the control signals via a CAN (60) bus within the specimen test vehicle in response to trigger signals.
摘要:
A sequence of events (SOE) recorder facility in a process control network environment is described herein. The SOE recorder facility is hosted by a networked node that receives digital signal status change (event) data from a networked controller. The sequence of events recorder facility receives a configured set of digital data signals from the controller, temporarily buffers the events in chronological order according to timestamps assigned to the events by their sources (e.g., fieldbus modules). The data is thereafter copied/removed from the buffer and provided to multiple destinations including: a process database that maintains an archival copy of the received event data for rendering event reports, and an SOE client user interface for rendering event logs to printers and/or graphical user interface displays.
摘要:
A slot calculation unit calculates a current slot number and stores it in a slot storage unit. When each of control tasks of a recognition processing portion, a vehicle speed calculation portion, a brake control portion, and a steering control portion is activated, a slot number at the time of output of an execution result used as input data is obtained from a task table storage unit, and it is determined whether a time constraint is violated based on a permissible slot number for the input data, stored in a constraint table storage unit. When an execution result of each control task is output, the stored current slot number is read, and it is determined whether a time constraint is violated based on a permissible slot number for the output of the execution result, stored in the constraint table storage unit.
摘要:
A sequence controller includes a periodic execution type sequence control module configured to execute each regular processing function block in a predetermined control period, an irregular processing function block storage configured to hold an irregular processing function block generated by a user, and a time-sharing execution type sequence control module configured to execute the irregular processing function block called from the irregular processing function block storage in free time of the control period. The periodic execution type sequence control module is configured to call the irregular processing function block from the irregular processing function block storage and to execute the irregular processing function block in the control period.
摘要:
A sequence of events detection system for use in a process control system uses sequence of events detection cards to detect and store indications of events and the times at which these events take place within the process control network. The sequence of events reporting system includes a stable master time source that is used to periodically time synchronize secondary clocks within each of the nodes of the process control system. Free running counters are located within each of the sequence of events detection cards at each node and these free running counters are used to mark each event with a counter value when the sequence of events detection card first detects the event. Indications of the event and of the counter value associated with a detected event are sent from each of the sequence1 of events detection cards to a corresponding controller which uses its secondary clock, a further free running counter and the value of the sequence of events counter assigned to the event to ascertain the actual or absolute time that the event was detected at the sequence of events card. The event and the absolute time for that event is then sent to a sequence of events reporting database, where this information is stored to form a system wide sequence of events log.
摘要:
The described technology is directed towards sharing asynchronous (async) tasks between task chains, including in a way that prevents cancellation of lower-level chain entity from cancelling a shared async task. A shared async task is wrapped in multiplexer code that maintains lower-level entity identities as a set of listeners of the shared async task, and when a listener cancels, only removes that listener from the set of listeners so that the shared async task does not cancel as long as one listener remains in the set. Also described is optimization to share an async task, and wrapping tasks in cancel-checking code that prevents the task from running its work if the task is intended to be cancelled but is queued to run before the cancel request is queued to run.
摘要:
A method of machine control can include providing at least a system master signal, selectively synchronizing at least sub-system master signal to the system master signal based on the value of the system master signal, and carrying out at least one operation based on the value of the other master signal. For example, a machine controller may provide a system virtual master signal and synchronize one or more module virtual master signals to the system virtual master based on the system virtual master count value. One or more components of the module may operate based on the count value of the module virtual master signal. The use of an asynchronous control method may advantageously increase the flexibility of the machine. Because the operation of the components of the machine may depend on respective virtual master signals, a machine using asynchronous control methods may advantageously continue operating one component or module in the event of a fault involving other components. Additionally, component operation can be redefined while other components of the machine continue to run.