Abstract:
A method and apparatus for use in bending sheet stock to form a selected design is disclosed. The apparatus comprises a controller including a programmable system for calculating the positions and shapes of bends for bending the stock to the selected design and a sequence for making the bends, and a printer for printing instructions regarding the positions, shapes and sequence of the bends. The printer can print instructions directly on the stock or on a label for attachment to the stock. The instructions can be utilized by an operator or machine in bending the sheet stock. The invention improves the efficiency and accuracy of the process for bending sheet stock.
Abstract:
A detection unit for detecting a data row of a press position and a load at the press position; an input/storage unit for storing at least a load value serving as references for determining stop or judge; a calculation unit of the value of the slope of the load for calculating the value of the slope of the load based on the press position and the load at the press position detected; a calculation unit of the value of the slope of the slope of the load for calculating the value of the slope of the slope of the load based on the calculated value of the slope of the load; and a determination unit for comparing the calculated value of the slope of the slope of the load with the values serving as the references to determine stop or judge are provided.
Abstract:
A side panel assembly is disclosed which is of simple construction and provides easy access to the assembly contents for servicing or the like. The side panel assembly includes a front wall (14), a back wall (12) and a side wall (16) which is bent to match the shape of the front (14) and/or back (12) wall. The front wall (14) is connected to the side wall (16) by inserting a fastener (30) through the front wall (14) and a pull-out tab (26) extending from the side wall (16). A method and apparatus for use in constructing the side panel (16) are also provided. The method and apparatus allow for automation of the lay-out, cutting to length, flanging and notching of the side panel (16).
Abstract:
A hemming path planning method and a hemming system are provided. The hemming path planning method includes the following steps. An initial contour data of a target is scanned to obtain. A first segment of the hemming path is planned according to the initial contour data. The first segment corresponds to a first bending angle. A second segment of the hemming path is planned according to the initial contour data and an expected springback amount related to the first bending angle. The second segment corresponds to a second bending angle. The first segment and the second segment are combined to obtain a continuous hemming path.
Abstract:
A method for modifying a stamping die to compensate for springback includes the steps of stamping a first part using a base, or pre-existing die set, and creating a surrogate die having the shape of the first stamped part. These steps are followed by simulated stamping of a blank with the surrogate die, where the blank is shaped according to the desired finished part. Then, the base die is modified by mapping the forming stresses, from the stamped blank, to an indicator blank, which is allowed to relax and then is employed as a template for modification of the base die. Following this, the accuracy of the newly modified base die is determined by stamping a second part in the modified base die and by comparing a number of dimensions of the second part with a number of corresponding dimensions of the desired finished part.
Abstract:
A major object of the present invention is to compensate for variations in springback angle resulting from variations in material properties from one lot to the next, for the realization of high angle accuracy bending. Based on the difference between a workpiece actual bend angle detected during bending and an estimated bend angle of a workpiece W at an arbitrary penetration point of an upper die 5, a correction value for prestored data relating to a springback behavior under a processing condition is obtained. Based on the correction value, a final penetration point of the upper die 5 is obtained.
Abstract:
A method and related system for operating a computer controlled press brake system to form a requested bend angle in a workpiece are described. According to the disclosed method, values corresponding to geometrical characteristics of the press brake and a first workpiece are stored, as is a value for the requested bend angle. A ram of the press is operated in a first direction, relative to the die, to a first selected position to bend the first workpiece and to hold the first workpiece to a restrained bend angle. The ram is thereafter operated in a second direction to release the first workpiece to an unrestrained bend angle. The difference between the restrained and unrestrained bend agles of the first workpiece is calculated. Using the values for geometrical characteristics and the requested bend angle, a correction factor is calculated. In accordance with the correction factor, the unrestrained and requested bend angles, the ram is set to travel to a corrected position. The ram is operated to the corrected position to bend a second workpiece, substantially identical to the first workpiece, to bend the second workpiece to the requested angle.
Abstract:
The present disclosure provides a navigation method and system which does not require a remotely located tracking system, or additional targets or other devices to be installed on the patient or object being tracked. The system uses one flexible component in physical contact with the patient/object and measures relative position as a function of forces that are generated by the flexing component as it is bent. The system translates forces into navigational commands for a robot, other manipulator, or for human manual navigation. A method for transforming a pre-planned motion pathway into a sequence of forces for this mode of navigation is also described. This system is also applicable in the field of manufacturing robotics, where the locations of objects or assemblies may not be precisely known or constant. The method and system disclosed herein can be used to maintain known position of an object/assembly or to navigate movement of a robot relative to an object/assembly as in the case of machining.
Abstract:
A method to check and control a roller bending machine for continuously bending an elongated workpiece at variable curvature radii in a bending machine using a series of rollers for bending, comprises the steps of measuring the distance of the elongated work piece in a point that is situated downstream the series of rollers for bending in successive instants, calculating a curvature radius of each bend section of the elongated workpiece, comparing the calculated curvature radius with the desired curvature radius and determining a difference between them, calculating the change of position to which an upstream roller has to be subjected in order to annul such a difference and operating the upstream roller on the base of the calculated change of position. A machine embodying the method is also described.
Abstract:
A method to check and control a roller bending machine for continuously bending an elongated workpiece at variable curvature radii in a bending machine using a series of rollers for bending, comprises the steps of measuring the distance of the elongated work piece in a point that is situated downstream the series of rollers for bending in successive instants, calculating a curvature radius of each bend section of the elongated workpiece, comparing the calculated curvature radius with the desired curvature radius and determining a difference between them, calculating the change of position to which an upstream roller has to be subjected in order to annul such a difference and operating the upstream roller on the base of the calculated change of position. A machine embodying the method is also described.