Abstract:
This invention discloses a method for calculating gripper trajectories in forming equipment. The method utilizes a computer aided design (CAD) or a computer aided engineering (CAE) computer program to calculate the appropriate location, speed, controller commands, and trajectory for each gripper used during a forming process.
Abstract:
A shape data specifies the shape of an elongated product within an overall coordinate system. Local coordinate systems are defined on respective cross-sections of the elongated product in the overall coordinate system. The local coordinate system is designed to represent a stable die of a bending apparatus. The images of the elongated product protruding forward from the stable die within the respective local coordinate systems serve to specify the position of a movable die of the bending apparatus. The specified position reflects the deformation induced in the elongated product between the stable and movable dies. An ideal movement amount of the movable die can be determined based on the determined positions within the local coordinate systems. The determined movement amount can be utilized to prepare the control data for the bending apparatus. When the prepared control data is supplied to the bending apparatus, an ideal movement of the movable die can be achieved so as to effect bending on the elongated workpiece at a higher accuracy in accordance with the shape data.
Abstract:
A hemming path planning method and a hemming system are provided. The hemming path planning method includes the following steps. An initial contour data of a target is scanned to obtain. A first segment of the hemming path is planned according to the initial contour data. The first segment corresponds to a first bending angle. A second segment of the hemming path is planned according to the initial contour data and an expected springback amount related to the first bending angle. The second segment corresponds to a second bending angle. The first segment and the second segment are combined to obtain a continuous hemming path.
Abstract:
A method of manufacturing an elongate element (10) using a punching operation assumes a polynomial relationship between punch depth (dpunch) and neutral axis, with the constants being a polynomial function of plastic deformation of the beam. Using finite element analysis, a relationship between the required plastic deformation, the second moment of area of the element and the neutral axis of the element can be derived.
Abstract:
A method of manufacturing an elongate element (10) using a punching operation assumes a polynomial relationship between punch depth (dpunch) and neutral axis, with the constants being a polynomial function of plastic deformation of the beam. Using finite element analyses, a relationship between the required plastic deformation, the second moment of area of the element and the neutral axis of the element can be derived.
Abstract:
A method for determining a bending die radius of a bending machine for bending a part and an associated apparatus. The method involves entering into a computer data concerning the part to be bent and an initial estimate of the radius of the bending die. Based on the data related to the part and the initial estimate, a final value for the die radius is determined. An improved bending machine and an associated method are also disclosed.
Abstract:
A control device for at least one technical installation is described herein. The control device includes at least one mobile control unit for controlling the at least one technical installation as well as at least one supply unit, which can be assigned in a fixed manner to the technical installation and be connected thereto in an energy- and signal-transmitting manner for supplying the at least one mobile control unit with energy. The at least one mobile control unit and the at least one supply unit have a device for wireless energy transmission with a transmission frequency within a predetermined distance between the supply unit and the mobile control unit and for wireless transmission of a safety protocol in the course of the energy transmission. Furthermore, a technical installation and a method for controlling a technical installation are specified.
Abstract:
This invention discloses a method for calculating gripper trajectories in forming equipment. The method utilizes a computer aided design (CAD) or a computer aided engineering (CAE) computer program to calculate the appropriate location, speed, controller commands, and trajectory for each gripper used during a forming process.
Abstract:
An apparatus prepares data for manufacturing a product or a part with a predetermined shape by using a bending press provided with detachable tools. The apparatus includes a computer memory that stores bending order information for manufacturing the product or the part. The bending order information is obtained after successfully completing bending operations and is associated with the product or the part.
Abstract:
An apparatus prepares data for manufacturing a product or a part with a predetermined shape by using a bending press provided with detachable tools. The apparatus includes a computer memory storing bending operation support information obtained after successfully completing bending operations. The bending operation support information supports an operator later performing bending operations on a workpiece while manufacturing the product or part. The bending operation support information is one of dependent on and associated with the completed bending operations.