摘要:
A marine vessel control system comprises a propulsion unit and a steering actuator for steering the propulsion unit. There is a shift actuator for shifting gears in the propulsion unit and a throttle actuator for increasing or decreasing throttle to the propulsion unit. There is an input device for providing user inputted steering commands to the steering actuator and for providing user inputted shift and throttle commands to the shift actuator and the throttle actuator. There is a sensor for detecting a global position and a heading direction of the marine vessel. A controller receives position and heading values of the marine vessel from the sensor. The controller compares the received position value to a pre-programmed position value to determine a position error difference. The controller also compares the received heading value to a pre-programmed heading value to determine a heading error difference.
摘要:
A steering system (1) is employed in a ship to which left and right propulsors (2L, 2R) are attached. The steering system (1) includes a first input device (11) configured to receive an input of any one of a forward thrust parameter and a reverse thrust parameter of the propulsors, a second input device (15) configured to receive an input of the other of the forward thrust parameter and the reverse thrust parameter of the propulsors, and a controller (17) configured to reflect the forward thrust parameter and the reverse thrust parameter to the propulsors in real time. In the steering system, the first input device and the second input device receive the inputs in parallel when a steering pattern for a ship is set.
摘要:
A system for maintaining a marine vessel in a body of water at a selected position and orientation includes a global positioning system that determines a global position and heading of the vessel and a proximity sensor that determines a relative position and bearing of the vessel with respect to an object near the vessel. A controller operable in a station keeping mode is in signal communication with the GPS and the proximity sensor. The controller chooses between using global position and heading data from the GPS and relative position and bearing data from the proximity sensor to determine if the vessel has moved from the selected position and orientation. The controller calculates thrust commands required to return the vessel to the selected position and orientation and outputs the thrust commands to a marine propulsion system, which uses the thrust commands to reposition the vessel.
摘要:
The present disclosure generally relates to an apparatus for storing, treating, and making up of various drilling fluids onboard a dynamically positioned vessel, such as a barge, boat, or shop. In particular, the present disclosure relates to a liquid mud plant (LMP) supporting any offshore drilling rig or platform from a vessel in closer proximity to that rig. Additionally, the present disclosure relates to the process by which the liquid mud plant is in closer proximity to the drilling, which is derived from the dynamical positioning capability of the liquid mud plant vessel.
摘要:
A method for reducing the swinging of a ship anchored or moored to a buoy, by the suitable activation of the bow thruster and the stern thruster of the ship in accordance with the signals obtained by at least one of the following sensors: a) gyroscope, b) magnetometer, c) anemometer, d) GPS, e) inertial navigation system, f) a device measuring the angle between the longitudinal axis of the ship and the vertical plane through the anchor chain of the ship, is described.
摘要:
A programmable buoy system having one or more buoys capable of connecting through the internet to a buoy command server. The buoy command server relays commands to each of the one or more buoys in response to user commands sent from a buoys command interface application on a mobile device. The programmable buoy system includes one or more buoys each having a hull with two or more pontoons where the hull has a top side and bottom side. A stationary rudder extends downward from the bottom side of the hull to be positioned in a body of water when the one or more buoys are in use. A motor is pivotably connected on each one or more buoys, wherein the motor has a propeller positioned away from the bottom side of the hull. The propeller and motor move the select one of the one or more buoys in the body of water.
摘要:
A rapid transition floating vessel that is able to follow the yaw motions of a turret moored floating vessel is provided. The rapid transition floating vessel includes a system and processes for dynamically positioning the floating vessel alongside a turret moored floating vessel whereby the floating vessel remains at a safe distance while being connected to the turret moored floating vessel. This is achieved by the floating vessel following the yaw motions of the turret moored floating vessel as the turret moored floating vessel weathervanes about a centre of the turret moorings.
摘要:
Various embodiments of the invention provide a buoy and system for monitoring divers and other underwater objects. In many embodiments, the buoy has capabilities to monitor a diver, obtain position information about the diver and use that information to move itself to an effective range for continued monitoring. The buoy can connect and communicate with a communication device attached to a diver to communicate, position, biometric and other data. In one embodiment, the buoy comprises a propulsion system for propelling the buoy, an acoustic communication module for communicating with the diver and a propulsion controller for controlling the propulsion system to move to the effective range. Other embodiments provide a power generation system using a power generating buoy comprising an inertial weight, an energy converter and a connecting linkage. The system may comprise a single or multiple buoys and can include an electrical storage such as an electrical battery.
摘要:
The present invention relates to an apparatus and method that control a vessel deviating from an anchorage using wide-range sensor-based spherical trigonometry. In the method, vessels anchored in an anchorage are monitored. The anchorage is defined as a group, and the group of the anchored vessels is managed. Leaving of a vessel, needing to deviate from the anchorage, from the group is controlled. If a vessel recognized as a vessel identical to one that left the group requests anchoring after a predetermined period of time has elapsed, the anchoring-requesting vessel is controlled.
摘要:
Various embodiments of the invention provide a buoy and system for monitoring divers and other underwater objects. In many embodiments, the buoy has capabilities to monitor a diver, obtain position information about the diver and use that information to move itself to an effective range for continued monitoring. The buoy can connect and communicate with a communication device attached to a diver to communicate, position, biometric and other data. In one embodiment, the buoy comprises a propulsion system for propelling the buoy, an acoustic communication module for communicating with the diver and a propulsion controller for controlling the propulsion system to move to the effective range. Other embodiments provide a power generation system using a power generating buoy comprising an inertial weight, an energy converter and a connecting linkage. The system may comprise a single or multiple buoys and can include an electrical storage such as an electrical battery.