摘要:
A robot controller determines an abnormality in position, velocity or acceleration of an end effector or a rotational axis of a robot. The robot controller includes a servo CPU that periodically writes current position data in a shared RAM with a host CPU. The current position data is obtained from robot position sensors. Using the written position data, the host CPU periodically compares stored data corresponding to position, velocity or acceleration with the newly written data. When an abnormal motion is detected, the robot is immediately stopped.
摘要:
The invention relates to a multiaxis robot with at least one gear associated with a robot axis and having a gearbox with positional retaining strips for fixing control cams for monitoring the swivel angle of the robot axis, the retaining strips having a substantially arcuate construction with an inner circumference roughly corresponding to the outer circumference of the gearbox and the retaining strips can be frontally braced against one another for fixing on the gearbox.
摘要:
A multi-axis electric spraying robot adapted for use in a hazardous environment includes a base having a first pressurized compartment and an arm assembly having a second pressurized compartment in which compartments electric motors are respectively located. The arm assembly is supported for movement on the base at one end thereof. The arm assembly includes a wrist adapted for connecting the opposite end of the arm assembly with a spraying tool. One electric motor is provided to drive each axis. The compartments are pressurized to prevent flammable gases or vapors from entering the first and second compartments during operation of the robot.
摘要:
A system for shielding a robot arm against being splashed with fluids comprises a protective shell-like cover of thin-walled plastic material impervious to fluids which is removably attached to the robot arm. The protective cover has a contoured shape generally conforming to the configuration of the robot arm and includes an upper member overlying the upwardly facing surfaces of the robot arm and an integral continuous side member proximally overlying the sidewall of the robot arm and extending to a lower rim generally coplanar with the downwardly facing surfaces of the robot arm. The upper member of the protective cover generally overlies the upwardly facing surface of the robot arm while the peripherally extending sidewall generally overlies the outwardly facing surface of the peripherally extending sidewall. In similar fashion, a protective plate of thin-walled plastic material impervious to fluids may also be removably attached to the downwardly facing surfaces of the robot arm and includes a peripheral rim generally coextensive with the peripherally extending sidewall of the link and proximate the lower rim of the protective cover when both the protective cover and the protective plate are so attached. With this construction, any splashing issuing from any direction and directed toward the robot arm is caused to impinge upon the protective cover and the protective plate thereby protecting the link of the robot arm to which it is attached.
摘要:
An overload protection device includes a cup-shaped cap member defining a cavity receiving a cup-shaped yoke member defining a pressurized air chamber receiving a piston having a rounded end surface engaging the cap member. An annular cam member is inserted into the cap member and defines three angularly spaced V-shaped cam surfaces with center seats which receive corresponding steel balls mounted on outwardly projecting ears of the yoke member. A rigid plastic ring is mounted on the yoke member with epoxy and contacts an annular shoulder within the cam member. The yoke member carries a pair of axially adjustable and normally closed electrical contact elements which are opened by an actuator pin projecting from the piston in response to tilting and/or rotation and/or axial movement between the yoke member and cap member.
摘要:
A burden loading robot includes a loading portion installed in a robot main body and a balancer for offsetting off-center loading of weight of the loading portion. The loading portion includes a loading plate which can be moved away from a fixing portion to a loading position outwards from the robot main body. When the loading plate is moved to the loading position, the balancer moves to the direction reverse to that of the loading plate at the same time. Thus, off-center loading of weight generated when a burden is loaded on the loading plate is offset by the balancer, to accordingly avoid the robot from falling down.