Abstract:
The processing oil contains polycyclic aromatic hydrocarbon, which is a substance known to be toxic to the human body, in an amount of less than 3 wt. % and an aromatic hydrocarbon in an amount of 25 wt. % or more, and has a kinematic viscosity at 100null C. of 10-30 mm2/s, a density of 0.870-970 g/cm3, and a 5 vol. % recovery temperature of 370-530null C. The processing oil exhibits excellent performance which has conventionally been obtained. The processing oil can be produced by a method in which oil mixture comprising an extract obtained through extraction from mineral oil by use of a polar solvent in an amount of 40-97 vol. % and lubricating base oil in an amount of 3-60 vol. % is subjected to extraction treatment by use of a polar solvent.
Abstract:
Disclosed is a method of removing dimethyl ether from an ethylene and/or propylene containing stream. Dimethyl ether is removed at a low pressure, preferably in a distillation column. The low pressure separation has the benefit of providing a relatively low temperature separation, while allowing for recovery of a highly concentrated ethylene and/or propylene stream.
Abstract:
A process for removing CO2 from a CO2-containing gas. The process includes scrubbing CO2 from a CO2-containing gas using an aqueous phase liquid forming a CO2-enriched aqueous phase. The CO2-enriched aqueous phase is then disposed of in at least one of a marine environment, a terrestrial formation or combination thereof.
Abstract:
The invention relates to a process for separating close-boiling, homo- and heteroazeotropic mixtures by using ionic liquids. Due to the selectivity and unusual combination of properties of the ionic liquids the process is superior to conventional extractive rectification from the point of view of costs and energy.
Abstract:
The present invention relates to the separation of diolefins, and lower aromatics from mixed streams of hydrocarbons using ionic liquids and metal complexes. The present invention provides a novel method to separate diolefins and lower aromatics from other hydrocarbyl streams which may contain small amounts of water.
Abstract:
A multi-step process for desulfurizing liquid petroleum fuels that also removes nitrogen-containing compounds and aromatics. The process steps are: thiophene extraction; thiophene oxidation; thiophene-oxide and -dioxide extraction; raffinate solvent recovery and polishing; extract solvent recovery; and recycle-solvent purification. The thiophene oxidation is accomplished with hydrogen peroxide and the extraction solvent is acetic acid in combination with secondary solvents. The operating conditions in the process are relatively mild at near ambient pressure and less than 145 null C. throughout the process, and the only chemical consumed in the process is hydrogen peroxide. The process design can be modified to accommodate a variety of liquid hydrocarbon feeds. Depending on the selected feedstock and product specifications, several process design variations are readily apparent, including the design of the extraction process sections, the solvent purification sections and the elimination of the thiophene extraction section.
Abstract:
Disclosed is a method of removing dimethyl ether from an ethylene and/or propylene containing stream. Dimethyl ether is removed at a high pressure, preferably in a distillation column. The high pressure separation has the benefit of providing a relatively low bottoms temperature separation, while allowing for recovery of a highly concentrated ethylene and/or propylene stream.
Abstract:
A method for removing CO2 from a gas stream, including methane and CO2. The method includes contacting a gas stream with an aqueous stream, so that at least a portion of the CO2 in the gas stream is dissolved into the aqueous stream, thereby creating a CO2-depleted gas stream, having an enriched methane concentration, and a CO2-enriched aqueous stream. The CO2-enriched aqueous stream is separated from the gas stream. Finally, the CO2-enriched aqueous stream is disposed of in at least one of a marine environment, a terrestrial formation or combination thereof.
Abstract:
The invention relates to an extractive distillation composition for at least partially separating a mixture of hydrocarbon compounds comprising: a. at least on one organic sulfoxide of the formula R1nullSOnullR2, and b. at least on one organic sulfone of the formula R3nullSO2nullR4 nullwherein R1, R2, R3, and R4 have at least one carbon atom and can be the same or different, and to processes for extractive distillation employing the extractive distillation composition.
Abstract:
Improved heavy oil conversion processes are disclosed in which the heavy oil feed is first thermally cracked using visbreaking or hydrovisbreaking technology to produce a product that is lower in molecular weight and boiling point than the feed. The product is then deasphalted using an alkane solvent at a solvent to feed volume ratio of less than 2 wherein separation of solvent and deasphalted oil from the asphaltenes is achieved through the use of a two-stage membrane separation system in which the second stage is a centrifugal membrane.